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t Radiative Processes in Astroparticle Physics

U The Multi-Messenger View of Astroparticle Physics

The investigation of secondary messengers emitted by high-energy particles and their
absorption in space plays a crucial role in astroparticle physics, shedding light on diverse
cosmic phenomena.

A key aspect of radiative processes is their influence on the energy spectrum of high-
energy events. Interactions between particles, electromagnetic fields, and matter, in-
volving mechanisms like synchrotron radiation, bremsstrahlung, and inverse Compton
scattering, can lead to significant energy losses. These losses modify the energy distri-
bution of particles, affecting the spectrum observed from these high-energy sources.

Furthermore, secondary emissions serve as powerful diagnostic tools for understanding
the physical properties and behaviors of astrophysical systems, even when the radiative
process is subdominant. For instance, the Galaxy’s diffuse gamma-ray emission offers
crucial information about cosmic ray densities, sources, and propagation, although the
emission of these photons is due to a process, pion production, which is sub-leading
when describing the transport of protons in the ISM.

U Synchrotron Radiation

Synchrotron radiation, denoted by the process 𝑒+𝐵 → 𝑒+𝛾+𝐵, is emitted by relativistic
charged particles as they undergo acceleration in a static magnetic field. In the non-
relativistic regime, this is known as cyclotron emission.

Starting with the basic Larmor formula, the total power emitted by an accelerating or
decelerating electron (or any charged particle) in c.g.s. units is:

𝑃 =
2
3 𝑞

2 𝑎
2

𝑐3

where 𝑎 = ‖a‖ is the acceleration.

The heuristic derivation of this formula includes: a) Radiative processes are proportional
to 𝑞2, as the cross-section 𝜎 is the square of the amplitude which for e.m. process is ∝ 𝑞,
b) Consistency with relativity requires dependence only on acceleration, not velocity,
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HE-AP Th Synchrotron Radiation

since power is a relativistic invariant being the ratio of two time-like components, and
c) Dimensional analysis justifies the 𝑎2 term.

In relativistic scenarios, the Larmor formula is valid if 𝑎2 is replaced by 𝑎𝜇𝑎𝜇, the invariant
square of the four-acceleration.

Problem. Demonstrate that 𝑎𝜇𝑎𝜇 is a relativistic invariant.

Considering the Lorentz force, the acceleration is perpendicular to velocity:

a =
F
𝑚

=
𝛾𝑞
𝑚

(v
𝑐
× B

)
leading to:

𝑎2 =
𝑞2

𝑚2
𝑣2⊥
𝑐2 𝛾

2𝐵2 −→ 𝑎2 =
𝑞2

𝑚2 𝛾
2𝛽2𝐵2 sin2 𝜃

The power emitted by synchrotron radiation in the limit 𝛽 → 1 is then:

𝑃s =
2
3
𝑞4𝐵2

𝑚2𝑐3 𝛾
2 sin2 𝜃

Notably, synchrotron radiation is predominantly significant for leptons rather than nu-
clei, as 𝑃s ∝ 1/𝑚4.

For an isotropic particle distribution, the average emitted power becomes:

〈𝑃s〉 = 4
9
𝑞4𝐵2

𝑚2𝑐3 𝛾
2 =

4
3 𝑐𝜎T

(𝑚𝑒

𝑚

)2
𝛾2𝑈B

using𝑈B = 𝐵2

8𝜋 and 𝜎T = 8𝜋
3

(
𝑞2

𝑚𝑒 𝑐2

)2
, and the average over the angle

〈sin2 𝜃〉 = 1
4𝜋

∫
𝑑Ω sin2 𝜃 =

1
4𝜋

∫ 2𝜋

0

∫ 𝜋

0
sin2 𝜃 sin𝜃𝑑𝜃 =

2
3

The electron energy loss timescale, important for understanding cooling rates, is:

𝜏loss(𝛾) ' 𝐸
|𝑑𝐸/𝑑𝑡 | =

𝛾𝑚𝑒 𝑐2

〈𝑃𝑠〉 =
3
4
𝑚𝑒 𝑐
𝜎T

1
𝛾𝑈B

∝ 1
𝐸

leading to the notable result that more energetic particles have shorter lifetimes.

Problem. The CRAB.

To determine the emission spectrum of an electron with a specific energy, we consider
the spectrum 𝑃𝜈 as the frequency power spectrum of 𝑃(𝑡), proportional to |𝑎(𝑡)|2. To
derive 𝑃𝜈, we employ a Fourier transform, which translates the time-domain signal into
its frequency components.

In synchrotron radiation, the effect of relativistic beaming is crucial. This phenomenon,
combined with the fundamental gyromotion of electrons in a magnetic field, results
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Figure 1.1: aberration

in the emitted power being concentrated at frequencies much higher than the gyrofre-
quency 𝜈𝑔 (see derivation in appendix).

Let’s first derive the aberration formula, assuming the primed frame is seen from the
unprimed frame as moving with speed 𝛽 = 𝑣/𝑐 along the x-axis:

𝑐𝑡′ = 𝛾(𝑐𝑡 − 𝛽𝑥)
𝑥′ = 𝛾(𝑥 − 𝛽𝑐𝑡)
𝑦′ = 𝑦

The velocity components transform as follows:

𝑢𝑥 =
𝑢′𝑥 + 𝛽𝑐

1 + 𝛽𝑢′𝑥/𝑐
𝑢𝑦 =

𝑢′𝑦
𝛾(1 + 𝛽𝑢′𝑥/𝑐)

Therefore, the emission angle 𝜃 is given by:

tan𝜃 =
𝑢𝑦
𝑢𝑥

=
𝑢′𝑦

𝛾(𝑢′𝑥 + 𝛽𝑐) =
𝑢′ sin𝜃′

𝛾(𝛽𝑐 + 𝑢′ cos𝜃′)
For light (with 𝑢′ = 𝑐), the aberration formula becomes:

tan𝜃 =
sin𝜃′

𝛾(𝛽 + cos𝜃′)

A photon emitted at 𝜃′ = 0 in the primed frame travels at 𝜃 = 0 in the observer’s frame.
Conversely, a photon emitted at 𝜃′ = 𝜋

2 travels at an angle 𝜃 approximated by 𝜃 ' 1
𝛾 .

This indicates that emission isotropic at the source is not perceived as isotropic by an
observer if there is a relativistic boost between them. This is particularly relevant for
phenomena like gamma-ray bursts (GRBs), which are strongly beamed in the forward
direction, forming a cone with an opening angle of approximately ∼ 2

𝛾 .

In the non-relativistic limit, the frequency of the emitted radiation corresponds to the
gyro-frequency, leading to a mono-chromatic spectrum at this frequency.
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Figure 1.2: opening

However, in the relativistic regime, continuous emission is altered by the beaming effect.
The signal is visible only at specific angles due to this effect. The resulting spectrum is
still a Fourier transform of the time-dependent emission, but now it has a characteristic
timescale Δ𝑡, giving a frequency spectrum peaked around ∼ 1

Δ𝑡 .

To determine the duration of emission as perceived by a distant observer, consider
the time taken for an electron to move from point A to B. This segment of the trajectory
corresponds to the period during which the radiation emitted by the electron falls within
the observer’s view because of the emitted cone:

Δ𝑡 =
AB
𝑣

At the observer (𝛿𝑡𝑖 is the time for the photon to reach the observer):

Δ𝑡obs = 𝑡𝐵 + 𝛿𝑡𝐵 − (𝑡𝐴 + 𝛿𝑡𝐴) = (𝑡𝐵 − 𝑡𝐴) + (𝛿𝑡𝐵 − 𝛿𝑡𝐴) = AB
𝑣

− AB
𝑐

=
AB
𝑣

(1 − 𝛽)

Using AB = 2
𝛾 𝑟L, we get:

Δ𝑡obs =
AB
𝑣

(1 − 𝛽)1 + 𝛽

1 + 𝛽

𝛽∼1' AB
𝑣

1
2𝛾2 ' 𝑟L

𝛾3

An observer sees a sequence of pulses of width:

Δ𝑡obs ' 1
𝑣𝛾2𝜈𝑔

These pulses are separated by a gyration time

𝑇 ' 1
𝜈𝐿

=
𝛾

𝜈𝑔
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Figure 1.3: observedelectricfield

Thus, in the relativistic limit, the spectrum experiences a 𝛾2 boost compared to the
cyclotron frequency:

𝜈𝑠 ∼ 1
Δ𝑡obs

=
𝛾3

𝑟L
= 𝛾2𝜈𝑔

Problem. Compute the properties of the Galactic radio emission.

The full result for a single electron with Lorentz factor 𝛾 is:

𝑃𝜈(𝜈, 𝛾, 𝜃) =
√

3𝑞3𝐵

𝑚𝑒 𝑐2 sin𝜃𝐹
(
𝜈
𝜈𝑐

)
where𝑃𝜈 is the power per unit of frequency, the characteristic frequency 𝜈𝑐 = 3

4𝜋𝛾
2 𝑞𝐵
𝑚𝑒 𝑐

sin𝜃,
and the synchrotron function is

𝐹(𝑥) = 𝑥
∫ ∞

𝑥
𝐾5/3(𝑥′)𝑑𝑥′

A useful approximation for 𝑃𝜈 is

𝑃𝜈 ' 1.8
(
𝜈
𝜈𝑐

)1/3
exp

(
− 𝜈
𝜈𝑐

)
notice that the peak frequency is approximately 𝜈max ' 0.29𝜈𝑐 .

O Quantum correction

In our previous analysis of synchrotron radiation, we assumed that the motion of elec-
trons does not change significantly due to photon emission. However, considering that
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photons carry momentum, there should be some recoil effect on the emitting electron.
This aspect becomes particularly relevant when the energy of the emitted synchrotron
photon, ℎ𝜈𝑠 , approaches the electron’s relativistic energy, 𝛾𝑚𝑒 𝑐2. Given that 𝜈𝑠 ∝ 𝛾2,
this effect is more pronounced at higher energies.

To quantify this, we introduce the parameter 𝜒:

𝜒 =
𝐵
𝐵𝑞

𝑝
𝑚𝑐

∼ ℎ𝜈𝑠
𝛾𝑚𝑐2

Here, 𝑝 is the electron momentum, and 𝐵𝑞 = 𝑚2𝑐3

𝑒ℏ ≈ 4.4 × 1013 G is a characteristic
magnetic field strength.

For 𝜒 � 1, the motion can be considered Newtonian, while for 𝜒 � 1, quantum effects
dominate. In extremely strong magnetic fields, like those found in pulsar atmospheres
(∼ 1015 G), quantum effects become significant even for relatively low electron momenta.

According to Landau, the power radiated in the quantum regime (𝜒 � 1) is:

𝑃𝑞 ∝ 𝑒2𝑚2𝑐3

ℏ2

(
𝐵
𝐵𝑞

)2/3
𝛾2/3

This indicates that the power dependency shifts from 𝛾2 to 𝛾2/3 in the quantum regime.

The spectrum in this regime peaks broadly and almost flatly around a frequency that
satisfies:

ℎ𝜈
𝐸 − ℎ𝜈 ∼ 𝜒

For 𝜒 � 1, the emitted frequency 𝜈 is approximately equal to the synchrotron frequency
𝜈𝑠 . In contrast, for 𝜒 � 1, ℎ𝜈 is comparable to the initial energy 𝐸, indicating that the
emitted photon carries away a significant portion of the electron’s energy. This results
in catastrophic energy losses and a non-continuous process, necessitating a Monte Carlo
approach for accurate modeling.

O Synchrotron emission by an electron population

Assume to have a population of electrons with a power-law distribution in energy within
some given range:

𝑛(𝛾)𝑑𝛾 = 𝑛0𝛾
−𝑝𝑑𝛾 𝛾min < 𝛾 < 𝛾max

where 𝑛(𝛾)𝑑𝛾 is the electron volume density, and usually the slope is 𝑝 ∼ 2 − 3.

The specific emissivity is given by

𝑗𝜈 =
∫ ∞

1
〈𝑃𝜈(𝛾)〉𝑛(𝛾)𝑑𝛾

where 𝑃𝜈 is the power emitted per unit frequency.
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We simplify our calculations assuming a 𝛿-function for 𝑃𝜈:

𝑃𝜈(𝛾) ' 〈𝑃𝑠〉𝛿(𝜈 − 𝜈𝑐)

follows
𝑗𝜈 =

4
3 𝑐𝜎T𝑈B𝑛0

∫ 𝛾max

𝛾min

𝛾2−𝑝𝛿(𝜈 − 𝛾2𝜈L)𝑑𝛾

finally

𝑗𝜈 =
2
3 𝑐𝜎T𝑛0

𝑈B
𝜈L

(
𝜈
𝜈L

)− 𝑝−1
2

which is valid in the range 𝛾2
min𝜈L < 𝜈 < 𝛾2

max𝜈L

Outside the validity limits we have to use the complete expression and we obtain

𝑗𝜈 ∝ 𝜈1/3 for 𝜈 < 𝜈min

and
𝑗𝜈 ∝ exp

(
− 𝜈
𝜈max

)
for 𝜈 > 𝜈max

O Kinetic equation for electron evolution

TO BE DONE

O Synchrotron Self-Absorption

The Synchrotron self-absorption corresponds to the inverse process where a free electron
can absorb a synchrotron photon in a magnetic field 𝑒 + 𝐵 + 𝛾 → 𝑒 + 𝐵.

We provide here an heuristic derivation of how this process impacts on the spectrum.
In fact, we have a population of electrons which are emitting radiation and absorbing
radiation and we want to compute the intensity using the radiative transfer equation.

Let’s remind that for a thermal distribution of electrons, the source function would
correspond to the black-body

𝑆𝜈 =
(
2𝜈2

𝑐2

) (
ℎ𝜈

exp(ℎ𝜈/𝑘𝑇) − 1

)
∝ 𝜈2〈𝐸〉

where the first term is the phase-space factor and the second is the mean electron energy
emitting photons at frequency 𝜈.

In fact, in the Rayleigh-Jeans limit 𝑘𝑇 � ℎ𝜈 and

〈𝐸〉 ' 𝑘𝑇 lim
𝑥→0

𝑥
exp 𝑥 − 1 ∼ 𝑘𝑇

10
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For a non-thermal synchrotron radiation 𝑘𝑇 must be replaced by the mean energy of an
electron emitting synchrotron radiation at frequency 𝜈

𝜈 ' 𝛾2𝜈L → 𝛾 ∼
(
𝜈
𝜈L

)1/2

follows

𝑆𝜈 ∼
(
2𝜈2

𝑐2

)
𝛾𝑚𝑒 𝑐2 ∝

(
2𝜈2

𝑐2

) (
𝜈
𝜈L

)1/2
∝ 𝐵−1/2𝜈5/2

From the definition of the source term 𝑆𝜈 =
𝑗𝜈
𝛼𝜈

, follows

𝛼𝜈 =
𝑗𝜈
𝑆𝜈

∝ (𝐵 𝑝+1
2 𝜈−

𝑝−1
2 )(𝐵 1

2 𝜈−
5
2 ) = 𝐵

𝑝+2
2 𝜈−

𝑝+4
2

We notice that 𝛼𝜈 decreases towards higher frequencies, so it will be relevant at low
energies.

From the transfer equation 𝐼𝜈 = 𝑆𝜈[1 − exp(−𝜏𝜈)] and reminding 𝜏𝜈 = 𝛼𝜈𝑠, we identify
the following limiting regimes:

• for 𝜏𝜈 � 1 corresponding to small frequencies 𝐼𝜈 → 𝑆𝜈

• for 𝜏𝜈 � 1 corresponding to large frequencies 𝐼𝜈 → 𝑆𝜈𝛼𝜈𝑠 = 𝑗𝜈𝑠

Therefore for each source exists a frequency 𝜈𝐵 where 𝜏𝐵 = 1 and the corresponding
spectrum will be:

• for 𝜈 � 𝜈𝐵 (optically thick) and 𝐼𝜈 ∝ 𝜈5/2, notice independent on 𝑝!

• for 𝜈 � 𝜈𝐵 (optically thin) and 𝐼𝜈 ∝ 𝜈−
𝑝−1

2

Problem. Estimate the age of the source from the break.

O Minimum Energy and Equipartition

The existence of a synchrotron source implies the presence of relativistic electrons with
some energy density𝑈e and a magnetic field whose energy density is𝑈B = 𝐵2

8𝜋 . What is
the minimum total energy in relativistic particles and magnetic fields required to produce a
synchrotron source of a given radio luminosity?

The energy density in particles is

𝑈𝑒 =
∫ 𝛾max

𝛾min

𝐸𝑛(𝛾)𝑑𝛾

11



HE-AP Th Inverse Compton Scattering

and the corresponding luminosity is

ℒ = 𝑉
∫ 𝛾max

𝛾min

����𝑑𝐸𝑑𝑡 ���� 𝑛(𝛾)𝑑𝛾
For a power-law distribution 𝑛(𝛾) ∝ 𝛾−𝑝 , and using 𝑃 ∝ 𝛾2𝑈𝐵 the ratio between the two
is proportional to

𝑈𝑒

ℒ ∝ 1
𝑈𝐵

∫ 𝛾max

𝛾min

(
𝛾

𝛾min

)1−𝑝
𝑑𝛾∫ 𝛾max

𝛾min

(
𝛾

𝛾min

)2−𝑝
𝑑𝛾

∝ 1
𝑈𝐵

𝛾
2−𝑝
min

𝛾
3−𝑝
min

∝ 1
𝑈𝐵𝛾min

Finally, 𝜈𝑠 ∝ 𝛾2𝐵 therefore 𝛾 ∝ 𝐵−1/2, for a fixed frequency, and thereby𝑈𝑒/ℒ ∝ 𝐵−3/2.

We conclude that the electron energy density needed to produce a given synchrotron
luminosity scales as𝑈𝑒 ∝ 𝐵−3/2.

The minimum of the total energy density𝑈 as a function of 𝐵 occurs at

𝑑𝑈
𝑑𝐵

=
𝑑
𝑑𝐵

(𝑈𝑒 +𝑈𝐵) = 0 → −3/2
𝐵

𝑈𝑒 + 2
𝐵
𝑈𝐵 = 0

The ratio of cosmic-ray particle energy density to magnetic field energy that minimizes
the total energy is

𝑈𝑒

𝑈𝐵
=

4
3

This ratio is nearly unity, so minimum energy constraint for an optically thin synchrotron
source places similar amount of energy in particles as in magnetic fields (equipartition).

Problem. Cygnus A (3C 405)

U Inverse Compton Scattering

The IC process involves the up-scattering of background photons by high-energy (HE)
electrons (𝑒 + 𝛾 → 𝑒′+ 𝛾′). It is a significant energy loss mechanism for electrons if their
energy exceeds that of the photons.

To derive the power emitted during IC scattering, we initially approach from a classical
perspective before discussing quantum interpretations.

In the classical view, an electromagnetic wave strikes an electron, causing it to oscillate
and thus radiate power due to acceleration. The Poynting flux (S) of a plane wave
incident on an electron is:

S =
𝑐

4𝜋E × B → 𝑆 =
𝑐

4𝜋 |E|2

12



HE-AP Th Inverse Compton Scattering

The Lorentz force acting on the electron is:

F = 𝑞(E + v
𝑐
× B) ' 𝑞E

assuming |v| � 𝑐.

The oscillating electric field of the wave is:

E = 𝐸0𝜖 sin
(
𝜔𝑡 + 𝜙

)
leading to an average acceleration:

a =
F
𝑚

→ 〈𝑎2〉 = 𝑞2

𝑚2

𝐸2
0

2
where we used

1
𝑇

∫ 𝑇= 2𝜋
𝜔

0
sin2(𝜔𝑡)𝑑𝑡 = 1

2

Thus, the average power radiated by the electron is:

〈𝑃〉 = 2
3
𝑞2𝑎2

𝑐3 =
2
3
𝑞2

𝑐3
𝑎2

𝑚2
𝐸0
2 =

1
3

𝑞4

𝑚2𝑐3𝐸
2
0

The classical cross-section associated to this process is the ratio between the power
radiated and the impinging flux

〈𝑃〉 = 𝜎T〈|S|〉 → 𝜎T =
1
3

𝑞4

𝑚2𝑐3𝐸
2
0
8𝜋
𝑐

1
𝐸2

0
=

8
3𝜋

(
𝑞2

𝑚𝑐2

)2

where we use the average Poynting flux 〈S〉 = 𝑐
8𝜋𝐸

2
0.

This is known as Thomson cross-section and its numerical value is

𝜎T ' 6.652 · 10−25 cm2

In other words, the electron will extract from the incident radiation the amount of power
flowing through the area 𝜎𝑇 and reradiate that power over the doughnut-shaped pattern
given by Larmors equation.

The time-averaged scattered power by a single particle is:

𝑃 = 𝜎T𝑐𝑈rad

where𝑈rad = 𝑆/𝑐 is the energy density of the incident radiation.

Incidentally, the Thomson optical depth, representing the probability of a photon un-
dergoing Thomson scattering (notice this is the opposite process!) is:

𝜏𝑒 =
∫

𝑛𝑒𝜎T𝑑𝑠

13



HE-AP Th Inverse Compton Scattering

Problem. The Intergalactic Medium (IGM) at redshifts 𝑧 ≲ 10 is observed to be
highly ionized, likely due to radiation from galaxies and quasars. Post-recombination
at 𝑧 ≈ 103, the IGM was almost completely neutral. This observation indicates that
reionization of the IGM occurred somewhere 𝑧𝑟 ≳ 10, although the exact timing of
this crucial transition remains unknown.

An ionized IGM Thomson scatters CMB photons. Under the assumption of a
uniform Universe with a specified baryon fraction Ω𝑏 in units of the critical density
Ω𝑐 , derive the relation between 𝜏𝑟 and 𝑧𝑟 and calculate 𝜏𝑟 assuming a reionization
redshift 𝑧𝑟 = 10 for an Einstein-de Sitter Universe.

The Compton scattering process, involving the interaction of photons with electrons,
can be effectively described using quantum mechanics.

We start by imposing the energy and momentum balance in the scattering process:

𝐾𝜇
𝑖 + 𝑃

𝜇
𝑖 = 𝐾𝜇

𝑓 + 𝑃
𝜇
𝑓

where 𝑃2
𝑖, 𝑓 = 𝑚2

𝑒 and 𝐾2
𝑖, 𝑓 = 0 (for photons).

Contracting the final momentum gives:

𝑃𝜇
𝑓 𝑃 𝑓 𝜇 = (𝑃𝑖 + 𝐾𝑖 − 𝐾 𝑓 )𝜇(𝑃𝑖 + 𝐾𝑖 − 𝐾 𝑓 )𝜇 → 𝑚2

𝑒 = 𝑚2
𝑒 + 2(𝑃𝑖𝐾𝑖 − 𝑃𝑖𝐾 𝑓 − 𝐾𝑖𝐾 𝑓 )

In the frame where the electron is initially at rest 𝑃𝑖 = (𝑚𝑒 , 0), and assuming the x-axis
is aligned with the incoming photon, we have:

𝐾𝑖 = 𝜖𝑖(1, 1, 0, 0) and 𝐾 𝑓 = 𝜖 𝑓 (1, cos𝜃, sin𝜃, 0)

Substituting these into the equation, we get:

𝑚2
𝑒 = 𝑚2

𝑒 + 2
(
𝑚𝑒𝜖𝑖 − 𝑚𝑒𝜖 𝑓 − 𝜖𝑖𝜖 𝑓 + 𝜖𝑖𝜖 𝑓 cos𝜃

) → 𝑚𝑒(𝜖𝑖 − 𝜖 𝑓 ) = 𝜖𝑖𝜖 𝑓 (1 − cos𝜃)

Leading to the relation for the final photon energy:

𝜖 𝑓 =
𝜖𝑖

1 + 𝜖𝑖
𝑚𝑒 𝑐2 (1 − cos𝜃)

The fractional energy change of the photon is:

Δ𝜖
𝜖

=
𝜖 𝑓 − 𝜖𝑖

𝜖𝑖
= −1 + 1

1 + 𝜖𝑖
𝑚𝑒 𝑐2 (1 − cos𝜃)

𝜖𝑖�𝑚𝑒 𝑐2

−→ − 𝜖𝑖
𝑚𝑒 𝑐2 (1 − cos𝜃)

This equation describes Compton scattering, where a photon scatters off an electron and
transfers energy, resulting in a decrease in photon energy. Notably, unless the photon’s
energy is comparable to or larger than the electron mass in the electron’s rest frame, the
photon energy is only slightly altered.

14



HE-AP Th Inverse Compton Scattering

Thomson scattering accurately describes the regime where the incident photon energy
𝜖𝑖 is much less than the electron rest energy (𝜖𝑖 � 𝑚𝑒 𝑐2). In this regime, energy transfer
is minimal, 𝜖𝑖 ' 𝜖 𝑓 , indicative of quasi-elastic scattering.

However, as 𝜖𝑖 approaches or exceeds 𝑚𝑒 𝑐2, the energy transfer becomes significant,
marking a transition to deeply inelastic scattering. This regime is governed by the
Klein-Nishina (KN) cross-section.

The full Klein-Nishina cross-section, derived using Quantum Electrodynamics (QED),
is given by:

𝜎KN =
3
4𝜎T

[
1 + 𝑥
𝑥3

(
2𝑥(1 + 𝑥)

1 + 2𝑥 − ln(1 + 2𝑥)
)
+ 1

2𝑥 ln(1 + 2𝑥) − 1 + 3𝑥
(1 + 2𝑥)2

]
where 𝑥 = 𝜖𝑖/𝑚𝑒 𝑐2.

In the limit of 𝑥 � 1, the equation converges to the Thomson limit

𝜎(𝑥) ' 𝜎T(1 − 2𝑥 + . . . )

while in the extreme KN limit (𝑥 � 1), it approaches

𝜎(𝑥) ' 3
8𝜎T

1
𝑥
(ln 2𝑥 + 1

2 )

Therefore, the principal effect of the KN regime is a reduction in the cross-section relative
to the classical Thomson value as the photon energy increases.

When the electron involved in Compton scattering has a velocity 𝛽 in the laboratory
(LAB) frame, the scattering dynamics change.

The relationship in the electron’s rest frame (primed frame) remains valid:

𝜖′𝑓 =
𝜖′𝑖

1 + 𝜖′𝑖
𝑚𝑒 𝑐2 (1 − cos𝜃′)

where 𝜃′ is the angle between incoming and outgoing photon directions in the primed
frame. Applying Lorentz transformation:

𝜖′𝑖 = 𝜖𝑖𝛾(1 − 𝛽 cos 𝛼)

where 𝛼 is the angle between the photon and electron in the LAB frame.

To express 𝜖′𝑓 in the LAB frame and account for the emission angle 𝛼′ in the comoving
frame:

𝜖 𝑓 = 𝛾(1 + 𝛽 cos 𝛼′)𝜖′𝑓 = 𝛾(1 + 𝛽 cos 𝛼′) 𝜖′𝑖
1 + 𝜖′𝑖

𝑚𝑒 𝑐2 (1 − cos𝜃′)
or

𝜖 𝑓 = 𝛾2𝜖𝑖
(1 + 𝛽 cos 𝛼′)(1 − 𝛽 cos 𝛼)

1 + 𝜖′𝑖
𝑚𝑒 𝑐2 (1 − cos𝜃′)
15



HE-AP Th Inverse Compton Scattering

In the limit 𝜖𝑖 � 𝑚𝑒 (or equivalently 𝛾𝜖𝑖 � 𝑚𝑒 𝑐2 or 𝐸𝑒𝜖𝑖 � 𝑚2
𝑒 𝑐

4 in the LAB frame):

𝜖 𝑓 ' 𝛾2𝜖𝑖(1 + 𝛽 cos 𝛼′)(1 − 𝛽 cos 𝛼)

For isotropic incident and outgoing radiation in the electron’s comoving frame, the
average final energy is approximately

𝜖 𝑓 ' 𝛾2𝜖𝑖 ' 4
( 𝜖𝑖
eV

) (
𝐸𝑒

GeV

)2
MeV

While the scattering angle is arbitrary in the comoving frame, in the LAB frame, the
outgoing radiation is beamed in the forward direction with an angle 1

𝛾 .

In the Thomson regime (𝜖′𝑖 � 𝑚𝑒), the maximum final photon energy, when 𝛽 ∼ 1,
cos 𝛼′ ∼ 1, and cos 𝛼 ∼ −1, is:

𝜖 𝑓 ∼ 4𝛾2𝜖𝑖

In the KN limit, the typical energy of the outgoing photon is:

𝜖 𝑓 ' 𝛾2𝜖𝑖

1 + 𝜖′𝑖
𝑚𝑒

' 𝛾2𝜖𝑖
𝜖′𝑖

𝑚𝑒 ' 𝛾2𝜖𝑖
𝛾𝜖𝑖

𝑚𝑒 ' 𝐸𝑒

This implies that in the extreme KN regime, the scattering becomes less frequent, but
when it occurs, the scattered photon carries away a significant fraction of the electron’s
energy.

In summary, in the LAB frame:

• In the Thomson regime: 𝜖 𝑓 ' 𝛾2𝜖𝑖 for 𝛾𝜖𝑖 � 𝑚𝑒 𝑐2

• In the KN regime: 𝜖 𝑓 ' 𝛾𝑚𝑒 𝑐2 for 𝛾𝜖𝑖 � 𝑚𝑒 𝑐2

O Single particle power radiated in IC scattering

In the Thomson regime, namely 𝜖′𝑖 � 𝑚𝑒 𝑐2, the power re-emitted by scattering is
𝑑𝐸
𝑑𝑡 ' 𝜎T𝑐𝑈rad.

We consider now radiation scattering by an ultrarelativistic electron. This expression is
still valid in the primed frame instantaneously moving with the electron

𝑑𝐸′
𝑑𝑡′ = 𝜎T𝑐𝑈′

rad

and we want to transform in the LAB frame.

We recall that the power is LI as it is the ratio of two time-like components, thereby

𝑑𝐸
𝑑𝑡

=
𝑑𝐸′
𝑑𝑡′ = 𝜎T𝑐𝑈′

rad

16
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The photon density can be seen as the number density of photon of energy 𝜖, that is

𝑈′
rad '

∫
𝑛′𝛾(𝜖′𝑖)𝜖′𝑓 (𝜖′𝑖 , 𝜃)𝑑𝜖′𝑖

where 𝑛′𝛾(𝜖′)𝑑𝜖′ is the number density of incident photons with energy 𝜖′ → 𝜖′ + 𝑑𝜖′ .

Similarly, the phase-space distribution is LI as 𝑓 (x, p) = 𝑑𝑁
𝑑3x𝑑3p = 𝑓 ′(x′, p′), therefore

𝑛(𝜖)𝑑𝜖 = 𝑓 𝑑3p transforms as 𝑑3p which transforms as an energy, follows

𝑛𝛾(𝜖)𝑑𝜖
𝜖

=
𝑛𝛾(𝜖′)𝑑𝜖′

𝜖′

finally, reminding that in Thomson 𝜖′𝑖 ' 𝜖′𝑓 (we are in the electron frame!)

𝑈′
rad '

∫
𝑛′𝛾(𝜖′𝑖)𝜖′𝑖𝑑𝜖′𝑖 =

∫
𝜖′2𝑖
𝑛𝛾(𝜖𝑖)
𝜖𝑖

𝑑𝜖𝑖 =
∫

𝜖2
𝑖 𝛾

2(1 − 𝛽 cos𝜃)2 𝑛𝛾(𝜖𝑖)
𝜖𝑖

𝑑𝜖𝑖

Assuming isotropic incident radiation field

1
2

∫ 1

−1
(1 − 𝛽 cos𝜃)2𝑑 cos𝜃 =

1
2

∫ 1

−1
(1 − 2𝛽 cos𝜃 + 𝛽2 cos2 𝜃)𝑑 cos𝜃 = 1 + 𝛽2

3

𝑈′
rad = 𝛾2

(
1 + 𝛽2

3

)
𝑈rad

therefore the angle-averaged Compton scattered power (in the LAB frame) is

𝑑𝐸
𝑑𝑡

= 𝜎T𝑐𝑈′
rad = 𝜎T𝑐𝛾2

(
1 + 𝛽2

3

)
𝑈rad

We are not done yet! The energy lost by the electron and gained by the photons is the
up-scattered power (power in the final photon field) minus the scattered power (power
in the initial photon field)

𝑑𝐸𝑒
𝑑𝑡

= 𝜎T𝑐𝑈′
rad − 𝜎T𝑐𝑈rad

This leads to the IC power as

𝑃IC = 𝜎T𝑐
(
𝛾2 + 𝛾2𝛽2

3 − 1
)
𝑈rad =

4
3𝜎T𝑐𝛽2𝛾2𝑈rad

where I used 𝛾2 − 1 = 𝛽2𝛾2

This is the net inverse-Compton power gained by the radiation field and lost by the electron.

The similarity of the inverse Compton and synchrotron equations shouldnt be too sur-
prising: they both describe the interaction of an electron with an electromagnetic field.

Note that synchrotron and inverse-Compton losses have the same electron-energy de-
pendence, so their effects on spectra are indistinguishable.

Dividing by the corresponding synchrotron power
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Figure 1.4: 𝛾-ray horizon for differen EBL models. Some lower limits from AGN spectra measurements are shown [1].

𝑃IC
𝑃s

=
𝑈rad
𝑈B

which is valid if no absorption and no KN effects are relevant.

What is the average energy increase in the Thomson regime?

The number of photons scattered per unit time are
𝑑𝑁𝑠

𝑑𝑡
' 𝜎T𝑐𝑈rad

〈𝜖𝑖〉
The average energy increase can be written as

𝑃IC ' 〈𝜖 𝑓 〉 𝑑𝑁𝑠

𝑑𝑡
→ 𝜖 𝑓 =

𝑃IC
𝑑𝑁𝑠/𝑑𝑡 =

4
3𝛾

2𝛽2𝜖𝑖 ' 4
3𝛾

2𝜖𝑖

If the energy transfer in the K’ frame is not neglected (KN regime)

−𝑑𝐸𝑒
𝑑𝑡

= 𝑃IC =
4
3𝛾

2𝛽2𝜎T𝑐𝑈rad

[
1 − 63

10
𝛾

𝑚𝑒 𝑐2

〈𝜖2
𝑖 〉

〈𝜖𝑖〉 + . . .
]

where < 𝜖𝑖 >=
∫
𝜖𝑖𝑛𝛾(𝜖𝑖)𝑑𝜖𝑖∫
𝑛𝛾(𝜖𝑖)𝑑𝜖𝑖 , which is obtained for incident isotropic photon distribution

(see Blumenthal and Gould, 1970).

Notice that in this regime the photon-field distribution is relevant (not only the total
density as before).

U Gamma-ray Absorption

Extra-galactic gamma-rays undergo absorption during intergalactic propagation by in-
teracting with photons in the diffuse radiation field, producing electron-positron pairs
(𝛾 + 𝛾 → 𝑒+ + 𝑒−). This process depends on the energy threshold condition for opacity.

18
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The square of the center-of-mass (COM) energy, 𝑠, is a relativistic invariant:

𝑠 = (𝑃𝑎 + 𝑃𝑏)2 = 𝑚2
𝑎 + 𝑚2

𝑏 + 2(𝐸𝑎𝐸𝑏 − p𝑎 · p𝑏) = 𝑚2
𝑎 + 𝑚2

𝑏 + 2𝐸𝑎𝐸𝑏(1 − 𝛽𝑎𝛽𝑏 cos𝜃)

For head-on collisions in the pair-production process 𝛾+𝛾 → 𝑒+𝑒−, the threshold energy
in the LAB frame is:

𝑠 = 2𝐸𝛾𝜖(1 + 1) = (2𝑚𝑒)2 → 4𝐸𝛾𝜖 = (2𝑚𝑒)2 → 𝐸𝛾 >
𝑚2
𝑒

𝜖

For instance, a 1 TeV photon (𝐸𝛾 = 1012 eV) interacts at the threshold with infrared
photons (𝜖 ≳ 0.26 eV).

The cross-section for pair-production, 𝜎𝛾𝛾(𝛽∗), is given by:

𝜎𝛾𝛾(𝛽∗) = 3
16𝜎T(1 − 𝛽∗2)

[
2𝛽∗(𝛽∗2 − 2) + (3 − 𝛽∗4) ln

(
1 + 𝛽∗

1 − 𝛽∗

)]
where 𝛽∗ is the velocity of the electron (or positron) in the CoM frame.

The velocity 𝛽∗ is determined by comparing the CoM energy with the energy in the CoM
frame:

2𝐸𝛾𝜖(1 − cos𝜃) = 4𝐸∗2
𝑒 → 𝛽∗ =

√
1 − 2𝑚2

𝑒 𝑐4

𝐸𝛾𝜖(1 − cos𝜃)
where I used

𝐸∗
𝑒 = 𝛾∗𝑚𝑒 𝑐2 =

1
(1 − 𝛽∗2)1/2𝑚𝑒 𝑐2 =

√
1 − 2𝑚𝑒 𝑐4

𝑥

The cross-section reaches a maximum at 𝑥 = 4𝑚𝑒 𝑐4, corresponding to 𝜎(𝑥) ' 𝜎T/4.

A 1 TeV photon most efficiently interacts with ∼ 1 eV photons. In the high-energy limit,
the cross-section becomes inversely proportional to the energy product:

𝜎𝛾𝛾(𝛽∗) ' 3
8
𝜎T

𝛾∗2
[
ln

(
4𝛾∗2

)
− 1

]
∝ 1

𝛾∗2 ' 1
𝐸𝛾𝜖

That means that 𝛾-rays can interact with all photons above the threshold but the cross-
section decreases as 𝜖 increases (near threshold process).

The optical depth for 𝛾𝛾 absorption, 𝜏𝛾𝛾(𝐸𝛾), takes into account all photons above the
threshold:

𝜏𝛾𝛾(𝐸𝛾) =
∫ 𝑅

0

∫
4𝜋
𝑑Ω(1 − cos𝜃)

∫ ∞

𝜖th

𝑑𝜖𝑛𝛾(𝜖,Ω, 𝑥)𝜎𝛾𝛾(𝐸𝛾 , 𝜖, cos𝜃)

O Electromagnetic cascades

TO BE DONE

19



HE-AP Th Nuclei-proton Interactions

U Nuclei-proton Interactions

Nucleon-nucleon and nucleus-nucleus reactions are governed by the strong force, a
short-range interaction. Unlike leptons and photons, nucleons and nuclei are extended
objects with radii approximately 𝑅𝑁 ∼ 1.2𝐴1/3 fm. This results in interaction cross-
sections of the order of the geometrical cross-section 𝜎geom ' 𝜋𝑅2

𝑁 ' 45𝐴2/3 mb1, which
is a valid rule of thumb [2].

Therefore, in regions with increased target density, such as the inner regions of starburst
galaxies or galactic molecular clouds, one can estimate the timescale of high-energy
nuclei interacting with gas targets as

𝜏 ' 1
𝑛t𝜎geo𝑐

' 25𝐴−2/3
( 𝑛H

cm−3

)−1
Myr

This timescale proves competitive when compared to other processes, such as particle
escape or other forms of energy loss.

A significant portion of astrophysical gamma rays and neutrinos originate from the
decay of pions, which are generated in interstellar collisions where protons serve as
both targets and projectiles.

High-energy proton interactions primarily result in the following final states:

𝑝 + 𝑝 →

𝑝 + 𝑝 + 𝜋0

𝑝 + 𝑛 + 𝜋+

𝑝 + 𝑝 + 𝜋+ + 𝜋−

The production of neutral pions 𝜋0 leads to gamma-ray radiation through the decay

𝜋0 → 𝛾 + 𝛾

The decay of charged pions, followed by the secondary muon decay, generates a total of
3 neutrinos in the final state as

𝜋+ → 𝜈𝜇 + 𝜇+

↰

𝑒+ + �̄�𝜇 + 𝜈𝑒

𝜋− → �̄�𝜇 + 𝜇−

↰

𝑒− + 𝜈𝜇 + �̄�𝑒

In this scenario, the same mechanism that generates high-energy photons also produces
neutrinos. Consequently, the presence of neutrinos serves as a definitive indicator of
hadronic processes, distinguishing them from processes primarily involving leptons,
which do not produce neutrinos.

1As reference value 1 mb = 10−27 cm2 ∼ 𝜎T
500 .
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σinel = (34.3 + 1.88 L + 0.25 L
2)×



1 −

(

Eth

Ep

)4




2

, mb

Figure 1.5: Kelner Aharonian [3]

The energy threshold for 𝜋0-production in the proton-proton collision is determined by

2𝑚2
𝑝 + 2𝐸th

𝑝 𝑚𝑝 =
(
2𝑚𝑝 + 𝑚𝜋0

)2

where 𝐸th
𝑝 is the proton energy threshold in the LAB frame.

Using 𝑚𝑝 = 0.938 GeV, and 𝑚𝜋0 = 0.135 GeV, one obtains

𝐸th
𝑝 = 𝑚𝑝 + 2𝑚𝜋 + 𝑚2

𝜋

2𝑚𝑝
' 1.22 GeV (1.1)

or, in terms of kinetic energy,

𝑇th
𝑝 = 𝐸th

𝑝 − 𝑚𝑝 ' 280 MeV (1.2)

The inelastic cross-section for proton-proton collisions, denoted as 𝜎pp, has been ac-
curately measured in terrestrial accelerators, with a clear dependence on the proton
energy in the laboratory frame. This cross-section rapidly increases from the particle
production threshold, reaching several tens of mb’s at proton energies of a few GeV, and
thereafter exhibits a more gradual increase with energy.

A convenient parametrization for the total inelastic cross-section can be found in [3]

𝜎inel = (34.3 + 1.88 𝐿 + 0.25 𝐿2)
1 −

(
𝐸th
𝑝

𝐸𝑝

)4
2

mb

where 𝐿 ≡ ln
(
𝐸𝑝/TeV

)
.
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Figure 1.6: Parameterized inclusive cross sections for pion production in proton-proton collisions. The green dotted
line is X. The red solid line is X. The blue long dashed line is X. The black dotted curve is calculated from X. [4]

The parametrization of experimental data for pion production in proton-proton colli-
sions is detailed in [4]:

𝜎𝑝𝑝→𝜋+𝑋 =

(
0.00717 + 0.0652

log𝑇𝑝
𝑇𝑝

+ 0.162
𝑇2
𝑝

)−1

mb

𝜎𝑝𝑝→𝜋−𝑋 =

(
0.00456 + 0.0846

𝑇0.5
𝑝

+ 0.577
𝑇1.5
𝑝

)−1

mb

𝜎𝑝𝑝→𝜋0𝑋 =
(
0.007 + 0.1

log𝑇𝑝
𝑇𝑝

+ 0.3
𝑇2

)−1

mb

where 𝑇𝑝 is the kinetic energy of the proton in the LAB frame in units of GeV.

An interesting characteristic of pion production is that the channels appear to follow the
relation:

𝜎𝑝𝑝→𝜋0𝑋 ' 1
2 (𝜎𝑝𝑝→𝜋+𝑋 + 𝜎𝑝𝑝→𝜋−𝑋)

It’s noteworthy that the threshold for the 𝑝 + 𝑝 → 𝜋− + 𝑋 reaction occurs at 𝑇𝑝 ' 600
MeV, attributed to the presence of two new particles in the final state. This threshold
is higher compared to the 𝜋+ production, which has a threshold of 𝑇𝑏 ' 289 MeV. This
difference accounts for the consistently larger cross-section of 𝜋+ compared to 𝜋−.

Consequently, this asymmetry in pion production leads to a greater secondary produc-
tion of positrons than electrons in cosmic rays [5].

The inelasticity2 factor for this process, involving proton energies in the GeV-TeV range,
is approximately 𝐾𝜋0 ' 0.17. Utilizing this value, we can derive the resulting spectrum
from proton-proton (pp) interactions. For this purpose, we employ the delta-function
approximation, expressed as 𝑇𝜋 ' 𝐾𝜋𝑇𝑝 .

We begin by introducing the pion emissivity as the number of pions produced per unit

2The inelasticity is the fraction energy loss of the initial proton.
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time, volume, and energy, denoted as 𝑞𝜋 = 𝑑𝑁𝜋
𝑑𝑡𝑑𝑉𝑑𝐸 . Consequently,

𝑞𝜋(𝐸𝜋) = 𝑐𝑛H

∫
𝛿(𝑇𝜋 − 𝐾𝜋𝑇𝑝)𝜎𝑝𝑝(𝐸𝑝)𝑁𝑝(𝐸𝑝)𝑑𝐸𝑝

where...

Follows,
𝑞𝜋(𝐸𝜋) ' 𝑐𝑛H

∫
𝛿(𝑇𝜋 − 𝐾𝜋𝐸𝑝 + 𝐾𝜋𝑚𝑝)𝜎𝑝𝑝(𝐸𝑝)𝑁𝑝(𝐸𝑝)𝑑𝐸𝑝

integrating over the 𝛿-function we arrive to

𝑞𝜋(𝐸𝜋) ' 𝑐𝑛H
𝐾𝜋

𝜎𝑝𝑝

(
𝑇𝜋
𝐾𝜋

+ 𝑚𝑝

)
𝑁𝑝

(
𝑇𝜋
𝐾𝜋

+ 𝑚𝑝

)
In the high-energy limit, where the mass of the pion can be disregarded,

𝑞𝜋(𝐸𝜋) '
𝐸𝜋�𝑚𝜋

𝑐𝑛H
𝐾𝜋

𝜎𝑝𝑝

(
𝐸𝜋
𝐾𝜋

)
𝑁𝑝

(
𝐸𝜋
𝐾𝜋

)
As a result, the pion spectrum closely mirrors the shape of the parent proton spectrum,
albeit shifted to a lower energy by a factor of 𝐾𝜋.

O The 𝜋0 gamma-ray spectrum

The decay of 𝜋0 into two gamma photons occurs almost instantaneously. Due to mo-
mentum conservation, these photons are emitted in opposite directions (back-to-back)
in the frame where the 𝜋0 is at rest (CoM). Energy conservation dictates that in this same
frame, each photon carries an energy of 𝐸′

𝛾 = 𝑚𝜋
2 .

In the LAB frame, where the pion moves with velocity 𝛽𝜋,

𝐸𝛾 =
𝑚𝜋

2 𝛾𝜋(1 + 𝛽𝜋 cos𝜃′) (1.3)

where 𝜃′ is the angle between photons and the direction of the pion.

The minimum and maximum photon energies are determined by varying the angle 𝜃

within its permissible range from -1 to 1:

𝐸min(max)
𝛾 =

𝑚𝜋

2 𝛾𝜋(1 ∓ 𝛽𝜋)

In the non-relativistic limit, where 𝛽 ' 0 and correspondingly 𝛾 ' 1, both the minimum
and maximum photon energies converge to 𝐸min

𝛾 ' 𝐸max
𝛾 ' 𝑚𝜋

2 .

Conversely, in the ultra-relativistic limit where 𝛽 ' 1 and 𝛾 → ∞, the minimum photon
energy approaches 𝐸min

𝛾 ' 0, while the maximum energy escalates to 𝐸max
𝛾 ' 𝐸𝜋 → ∞.

From Eq. 1.3, we deduce a relationship between the photon energy and the emission
angle, leading to

𝑑𝐸𝛾 =
𝑚𝜋

2 𝛾𝜋𝛽𝜋 𝑑cos𝜃′
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Given that the pion is a scalar particle, its decay products are emitted isotropically. This
is expressed as: ∫

𝑑Ω
𝑑𝑁
𝑑Ω

= 1

from this, we obtain 3:
𝑑𝑁
𝑑Ω

=
1

4𝜋 → 𝑑𝑁 =
1
2 𝑑cos𝜃′

Combined together, we conclude

𝑑𝑁
𝑑𝐸𝛾

=
1

𝑚𝜋𝛾𝛽
=

1
(𝐸2

𝜋 − 𝑚2
𝜋)1/2

Therefore, after boosted for the energy of the emitting 𝜋0, the probability to emit a
photon of energy 𝐸𝛾 is uniformly distributed in energy space between, in the relativistic
limit, 𝐸min ' 0 and 𝐸max ' 𝐸𝜋. Essentially, one can expect a box-like spectrum within this
range.

We now move to calculate the mean energy using a logarithmic representation, that is:

〈log𝐸〉 = 1
2

[
log𝐸𝛾,min + log𝐸𝛾,max

]
= log

[
𝐸2
𝜋

4 (1 − 𝛽2
𝜋)

]1/2

= log
(𝑚𝜋

2

)
This implies that in a logarithmic scale, the central point of the interval is equivalent to
half the pion’s rest mass, independent of 𝐸𝜋.

The resulting spectrum is composed of a weighted sum of such box-like distributions.
Since each component of this distribution is symmetrically centered around 𝑚𝜋/2, the
photon distribution will peak at log(𝑚𝜋/2).
Consequently, the gamma-ray spectrum consistently exhibits a prominent feature at
approximately 67.5 MeV, regardless of the pion spectrum and, by extension, the spectrum
of the parent protons. A characteristic bump in the energy spectrum, peaking at around
∼70 MeV, followed by a decline, might serve as a clear identifier of 𝛾-rays originating
from hadronic processes.

Observe that 𝐸𝛾,min +𝐸𝛾,max = 𝐸𝜋 and 𝐸𝛾,min𝐸𝛾,max = 𝑚2
𝜋

4 . Hence, we can express this as:

𝐸𝜋 = 𝐸𝛾,min + 𝐸𝛾,max = 𝐸𝛾,max + 𝑚2
𝜋

4𝐸𝛾,min

As a result, for a given photon energy 𝐸𝛾, the minimum pion energy required to produce
a photon of energy 𝐸𝛾 occurs when 𝐸𝛾,min = 𝐸𝛾,max = 𝐸𝛾, thereby:

𝐸𝜋,min = 𝐸𝛾 + 𝑚2
𝜋

4𝐸𝛾

3Remind: 𝑑Ω = sin𝜃𝑑𝜃𝑑𝜙 → 〈𝑑Ω〉𝜙 = 2𝜋𝑑 cos𝜃
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Figure 1.7: In 2013 FERMI detected a feature compatible with the pion-bump in two old SNRs in interaction with
Molecular Cloud [6]

This relationship helps in determining the lower limit of the pion energy necessary for
generating a photon of a specified energy 𝐸𝛾. In fact, the 𝛾-ray emissivity can be written
as

𝑞𝛾(𝐸𝛾) = 2
∫ ∞

𝐸𝜋,min

𝑑𝐸𝜋𝑞(𝐸𝜋) 𝑑𝑁𝑑𝐸𝛾
= 2

∫ ∞

𝐸𝛾+ 𝑚2
𝜋

4𝐸𝛾

𝑑𝐸𝜋
𝑞(𝐸𝜋)

(𝐸2
𝜋 − 𝑚2

𝜋)1/2
' 2

∫ ∞

𝐸𝛾

𝑑𝐸𝜋
𝐸𝜋

𝑞𝜋(𝐸𝜋)

where the final expression holds true at very high energies, a regime in which the pion
mass can be considered negligible.

Even at this early stage, we can note that the gamma-ray spectrum maintains the same
spectral index as the protons, albeit shifted in energy by a factor of approximately 𝐾𝜋/2.

To advance, let’s calculate the pion emissivity as follows:

𝑞(𝐸𝜋) = 𝑐𝑛H

∫ ∞

𝐸𝜋
𝑑𝐸𝑝𝑁𝑝(𝐸𝑝) 𝑑𝜎𝑑𝐸𝜋 (𝐸𝑝 , 𝐸𝜋)

where 𝑑𝜎
𝑑𝐸𝜋

is the differential pion production cross section, 𝑛H is the average matter
density, . . .

The differential cross-section for pion production in proton-proton interactions can be
expressed in terms of the total inclusive cross-section as follows:

𝑑𝜎
𝑑𝐸𝜋

(𝐸𝑝 , 𝐸𝜋) = 𝜎𝑝𝑝(𝐸𝑝)
𝑓 (𝐸𝑝 , 𝐸𝜋)
𝐸𝜋

Here, 𝑓 is an auxiliary function designed to fit experimental data, fulfilling the condition∫ 𝐸𝜋,max

𝐸𝜋,min

𝑑𝐸𝜋
𝐸𝜋
𝑓 (𝐸𝑝 , 𝐸𝜋) = 1. Moreover, it has been observed that 𝑓 depends on 𝐸𝑝 and 𝐸𝜋

through the combined parameter 𝑥 = 𝐸𝜋/𝐸𝑝 .
A parametrization of 𝑓 (𝑥) is provided in the literature [7]:

𝑓 (𝑥) = 0.67(1 − 𝑥)3.5 + 0.5 exp(−18𝑥)
The proton intensity, as observed in cosmic radiation, is assumed to adhere to a power-
law dependence on energy

𝐼𝑝(𝐸𝑝) = 𝐼0

(
𝐸𝑝
𝐸0

)−𝛼
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Upon substitution, the pion emissivity simplifies to

𝑞(𝐸𝜋) ' 4𝜋𝑛H𝐼0𝜎0

∫ ∞

𝐸𝜋

𝑑𝐸𝑝
𝐸𝜋

(
𝐸𝑝
𝐸0

)−𝛼
𝑓 (𝑥) = 4𝜋𝑛H𝐼0𝜎0

(
𝐸𝜋
𝐸0

)−𝛼 ∫ 1

0
𝑑𝑥𝑥𝛼−2 𝑓 (𝑥)︸             ︷︷             ︸
𝑌(𝛼)

where𝑌(𝛼) is the spectrum-weighted yield of pions produced from a power-law proton
spectrum of spectral index 𝛼.

Finally, for a proton population following a power-law distribution, the photon emissiv-
ity can be expressed as:

𝑞(𝐸𝛾) = 2
∫ ∞

𝐸𝛾

𝑑𝐸𝜋
𝐸𝜋

𝑞(𝐸𝜋) = 8𝜋𝑛H𝐼0𝜎0𝑌(𝛼)
∫ ∞

𝐸𝛾

𝑑𝐸𝜋
𝐸𝜋

(
𝐸𝜋
𝐸0

)−𝛼
=

8𝜋
𝛼
𝑛H𝜎0𝑌(𝛼)𝐼𝑝 (

𝐸𝛾
)

The final expression for 𝑞(𝐸𝛾) highlights the significant correlation between the spectral
index of the proton energy spectrum and that of gamma rays, and by extension, with
neutrinos:

𝛼𝑝 ' 𝛼𝛾 ' 𝛼𝜈

In contrast to IC scattering, this relationship aids in differentiating between the two
processes. Specifically, the gamma-ray spectrum resulting from hadronic processes
more closely mirrors the spectral index of the parent protons, whereas gamma rays
produced via IC scattering exhibit a comparatively flatter behavior relative to their
parent electrons 𝐸 −𝛼−1

2 .

Problem. Compute the shape of 𝑞𝛾(𝐸𝛾) using the fitting formula of Eq. (1) in
1302.3307 and using the 𝛿-function approximation. Plot 𝑞𝛾(𝐸𝛾) in linear scale
and 𝐸2

𝛾𝑞𝛾(𝐸𝛾) in log-log one.

To demonstrate the utility of these results, we estimate the expected diffuse galactic
gamma-ray background, which arises from the scattering of cosmic rays through proton-
proton interactions within our Galaxy.

Assuming the local cosmic rays are a fair representation of their overall density in the
Galaxy, we can express the gamma-ray intensity as follows:

𝐼𝛾(𝐸𝛾) = 1
4𝜋

∫
los
𝑑𝑠 𝑞(𝐸𝛾) = 2

𝛼
𝑁H𝜎0𝑌(𝛼)𝐼𝑝(𝐾𝛾𝐸𝑝)

Here, 𝑁H =
∫

los𝑑𝑠 𝑛H represents the column density of the gas, and 𝐾𝛾 = 𝐾𝜋/2 ∼ 0.1.

Consequently, the energy squared times the gamma-ray intensity is given by:

𝐸2
𝛾𝐼𝛾 =

2
𝛼
𝑁H𝜎0𝑌(𝛼)𝐾2

𝛾

[
𝐸2
𝑝 𝐼𝑝(𝐸𝑝)

]
𝐸𝑝=𝐸𝛾/𝐾𝛾
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To calculate the gamma-ray intensity at 1 GeV, we utilize a gas column density along
the Galactic plane of 𝑁H ' 1023 cm−2, as inferred from radio observations. The proton
intensity, derived from direct measurements, is:[

𝐸2
𝑝 𝐼𝑝(𝐸𝑝)

]
𝐸𝑝=10 GeV

' 2 × 103 GeV m−2s−1sr−1

Employing a cross-section 𝜎0 ' 30 mb, and a value of 𝑌(𝛼) around 104, we find:

𝐸2
𝛾𝐼𝛾 ' 5 × 10−5 GeV cm−2s−1sr−1

This estimate closely aligns with the average value of the diffuse emission measured
around the Galactic plane (within |𝑏 | < 5.0 degrees) for 𝐸𝛾 ' GeV, for instance, by the
Fermi-LAT.

This correlation strongly suggests that the diffuse galactic gamma-ray background is
likely the result of pp interactions within our Galaxy.

U Nuclei-𝛾 Interactions

In the vicinity of astrophysical sources, there is often a high density of photons spanning
a range of wavelengths, including radio, infrared, visible, and ultraviolet.

While the cross-section for 𝛾-proton interactions is typically two orders of magnitude
smaller than that of pp interactions, in certain astrophysical environments, secondary
meson production via photoproduction can be substantially higher than that from pp
interactions. This increased probability is due to the much greater number density of
ambient photons 𝑛𝛾 compared to the number density of matter in the environment.

In the interaction of nuclei with radiation fields, the dominant mechanism is photo-pion
production, as exemplified by the following processes:

𝑝 + 𝛾 → Δ+ →

𝑝 + 𝜋0

𝑛 + 𝜋+

The subsequent decay of these pions follows the same pattern as previously discussed.

At very high energies, multi-pion production becomes significant, represented by:

𝑝 + 𝛾 → 𝑝 + 𝑎𝜋0 + 𝑏(𝜋+ + 𝜋−)

where 𝑎 and 𝑏 are multiplicities...

For UHECRs, a competitive process for energy loss is pair production:

𝑝 + 𝛾 → 𝑝 + 𝑒+ + 𝑒−
4Recompute...
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The thresholds for these two processes can be calculated as:

𝐸𝜋
𝑝 =

𝑚2
𝜋 + 2𝑚𝜋𝑚𝑝

2𝜖(1 − cos𝜃) ' 7 × 109 eV

and

𝐸𝑒𝑒𝑝 =
4𝑚2

𝑒 + 8𝑚𝑒𝑚𝑝

2𝜖(1 − cos𝜃) ' 6 × 1017 eV

Notice that both energy thresholds are inversely proportional to 𝜖. This implies that a
lower energy threshold corresponds to interactions with a photon field of higher energy.

For pion production, the typical cross-section as measured in laboratory is:

𝜎𝑝𝛾 '


340𝜇b 200 MeV ≲ 𝐸′
𝛾 ≲ 500 MeV

120𝜇b 𝐸′
𝛾 ≳ 500 MeV

The inelasticity for the photo-pion production process is approximately 𝐾𝑝𝛾 ' 0.2.

Then, the cooling timescale associated with this process can be readily estimated as
follows:

𝑡𝑐(𝐸) ' 𝐸
¤𝐸 ∼ 𝐸

Δ𝐸/Δ𝑡 ∼
𝐸

𝐾𝑝𝛾𝐸
1

𝑛𝛾𝑐𝜎𝑝𝛾
=

1
𝐾𝑝𝛾𝑛𝛾𝑐𝜎𝑝𝛾

O Neutrinos from cosmic accelerators

Various potential sources of ultra-high energy extragalactic cosmic rays are suggested
as high-energy neutrino emitters. A prime example is GRBs, where the models for
acceleration and neutrino production are closely aligned.

This relationship is used as a basis for estimating the expected upper limit of very
high-energy neutrinos.

We start by assuming that the primary channels for HE pion production from hadronic
interactions in extragalactic environments are p-𝛾 interactions, as previously discussed.

Due to isospin symmetry, the decay of the Δ+ resonance favors protons over neutrons,
with branching ratios of 2/3 and 1/3, respectively. Correspondingly, similar processes
involving neutrons instead of protons lead to the production of 𝜋− mesons.

As before, the average pion energy is
〈
𝐸𝜋/𝐸𝑝

〉 ' 1
5 .

Regardless of the specific process, both charged and neutral pions will decay in the
following manner:

𝜋0 → 𝛾 + 𝛾

𝜋+ → 𝜈𝜇 + 𝜇+ → 𝜈𝜇 + 𝑒+ + 𝜈𝑒 + �̄�𝜇

The energy inelasticities for these decay processes are as follows:
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• For photons: 〈
𝐸𝛾

𝐸𝜋

〉
' 1

2 →
〈
𝐸𝛾

𝐸𝑝

〉
' 1

10

• And for neutrinos: 〈
𝐸𝜈

𝐸𝜋

〉
' 1

4 →
〈
𝐸𝜈

𝐸𝑝

〉
' 1

20

These relationships clearly indicate that there must be a connection between UHECRs,
neutrinos, and 𝛾-rays.

An additional channel for neutrino production is through neutron decay, represented
by the process:

𝑛 → 𝑝 + 𝑒− + �̄�𝑒

However, neutrinos generated from neutron decay characteristically possess much lower
energies, approximately on the order of 10−2 times the energy of neutrinos produced
from muon decays.

Consider 𝑄𝑖(𝐸) = 𝑑𝑁
𝑑𝐸 𝑑𝑡 as the production rate of a particle type 𝑖, representing the

number of particles produced per unit time within the energy range 𝐸 to 𝐸 + 𝑑𝐸. From
this, we can deduce:

For neutrinos: ∑
𝛼

𝐸𝜈𝑄𝜈𝛼 (𝐸𝜈) = 3 [𝐸𝜋+𝑄𝜋+(𝐸𝜋+)]𝐸𝜋+'4𝐸𝜈

While for neutral pions:

𝐸𝛾𝑄𝛾(𝐸𝛾) ' 2 [𝐸𝜋0𝑄𝜋0(𝐸𝜋0)]𝐸𝜋0'2𝐸𝛾

Assuming that 𝐸𝜋+ ' 𝐸𝜋0 and 𝑄𝜋+ ' 𝑅𝜋𝑄𝜋0 , the relationship between neutrino and
gamma-ray production rates is given by:

1
3

∑
𝛼

𝐸𝜈𝑄𝜈𝛼 (𝐸𝜈) ' 𝑅𝜋 [𝐸𝜋0𝑄𝜋0(𝐸𝜋0)]𝐸𝜋0'4𝐸𝜈

Therefore, we arrive at the relation:

1
3

∑
𝛼

𝐸2
𝜈𝑄𝜈𝛼 (𝐸𝜈) ' 𝑅𝜋

4
[
𝐸2
𝛾𝑄𝛾(𝐸𝛾)

]
𝐸𝛾'2𝐸𝜈

This highlights the connection between photons and neutrinos.

Assuming a population of identical neutrino sources, each with a luminosity ℒ𝜈 and
a number density 𝑛𝑠 , the production rate per unit volume can be expressed as 𝐸2 𝑑𝑄

𝑑𝑉 '
ℒ𝜈𝑛𝑠 . The resulting local neutrino intensity5 is given by:

𝐸2
𝜈𝐼𝜈 ' 𝑐𝑡H

4𝜋 𝜉ℒ𝜈𝑛𝑠

5See appendix...

29



HE-AP Th Nuclei-𝛾 Interactions

1038 1039 1040 1041 1042 1043 1044 1045 1046

neutrino luminosity Lν[erg/s]

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

ef
fe

ct
iv

e
lo

ca
ld

en
si

ty
ρ

ef
f

[M
pc
−3

]
BL Lac

Starburst

Galaxy Clusters

FR-I

FR-II

LL AGN

excluded by non-observation of
closest source in Northern Hemisphere

(E2φPS < 2× 10−12TeV/cm2/s)

diffuse flux (ξz = 2.6)
diffuse flux (ξz = 0.5)

FSRQ

Figure 1.8: Alhers Halzen [8]

Here, 𝑡H represents the Hubble-Lemaître time, approximately equivalent to 1/𝐻0, and
𝜉𝑧 ∼ O(1) is a factor that accounts for the redshift evolution of the sources.

IceCube has detected a diffuse neutrino emission characterized by an intensity of:

𝐸2
𝜈𝐼

IC
𝜈 ' 2.8 × 10−8 GeV cm−2 s−1 sr−1

Comparing this observed flux with our theoretical prediction allows us to establish an
upper limit for the properties of these neutrino sources:

ℒ𝜈𝑛𝑠 ' 4𝜋
𝜉𝑧𝑅𝐻

𝐸2
𝜈𝐼

IC
𝜈 ' 4 × 1043 erg Mpc−3 yr−1

In this equation, 𝑅H = 𝑐𝐻−1
0 ' 4420 Mpc represents the current Hubble-Lemaître radius.

Measurements of UHECRs have provided an estimated intensity at a proton energy of
𝐸𝑝 ≳ 1017 eV as:

𝐸2
𝑝 𝐼

UHE
𝑝 ' 10−7 GeV cm−2 s−1 sr−1

Correspondingly, this implies a cosmic ray luminosity density of:

𝐸2
𝑝
𝑑𝑄𝑝

𝑑𝑉
' 1044 erg Mpc−3 yr−1

Using these values, we can infer an upper limit for the production rate of pions:

𝐸𝜋+𝑄𝜋+(𝐸𝜋+) + 𝐸𝜋0𝑄𝜋0(𝐸𝜋0) ' [
𝐸𝑝𝑄𝑝(𝐸𝑝)

]
𝐸𝑝'𝐸𝜋〈𝐸𝑝/𝐸𝜋〉

This relation can be approximated as:(
1 + 𝑅𝜋

𝑅𝜋

)
𝐸𝜋+𝑄𝜋+(𝐸𝜋+) ' [

𝐸𝑝𝑄𝑝(𝐸𝑝)
]
𝐸𝑝'𝐸𝜋〈𝐸𝑝/𝐸𝜋〉
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Figure 1.9: Alhers Halzen [8]

And further refined to:(
1 + 𝑅𝜋

𝑅𝜋

)
𝐸2
𝜋+𝑄𝜋+(𝐸𝜋+) ' 1〈

𝐸𝑝/𝐸𝜋
〉 [
𝐸2
𝑝𝑄𝑝(𝐸𝑝)

]
𝐸𝑝'𝐸𝜋〈𝐸𝑝/𝐸𝜋〉

Thus, the refined expression for the pion production rate becomes:

𝐸2
𝜋+𝑄𝜋+(𝐸𝜋+) ' 𝑥𝜋

𝑅𝜋

1 + 𝑅𝜋

[
𝐸2
𝑝𝑄𝑝(𝐸𝑝)

]
𝐸𝑝'𝐸𝜋〈𝐸𝑝/𝐸𝜋〉

Here, 𝑥𝜋 denotes the average fraction of proton energy that gets converted into the
energy of pions.

Integrating the previously derived equations, we obtain a relationship for the cumulative
intensity of neutrinos across all flavors:

1
3

∑
𝛼

𝐸2
𝜈𝐼𝜈𝛼 ≲ 3 × 10−8𝑥𝜋

(
𝜉𝑧
2.6

)
GeV cm−2 s−1 sr−1

Here, 𝑓𝜋 = 1 represents the calorimetric limit, also known as the Waxman-Bahcall bound.

This upper limit is primarily applicable to transparent sources, as the local environment’s
opacity and the presence of other interaction processes, can also impact the overall
neutrino production and escape mechanisms.. Say more...

An underlying assumption for this model is that the source spectrum is steeper than
an 𝐸−2 energy distribution. This assumption is based on typical observations and
theoretical considerations of cosmic ray sources. The steeper spectrum implies that
there is a relatively higher abundance of lower-energy particles compared to the higher-
energy ones, which influences the overall intensity and energy distribution of emitted
particles, including neutrinos.
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t A Primer on Plasma Astrophysics

U Ideal MHD

TO BE DONE

U Small Perturbations in a Plasma: MHD Waves

MHD waves play a pivotal role in understanding the dynamics of astrophysical plasmas.
In this section, we explore the concept of small perturbations in a plasma under the
framework of ideal MHD, characterized by infinite conductivity. This assumption is
particularly relevant in astrophysical contexts, where the presence of electric fields is
minimal.

We start by listing the fundamental equations governing the behavior of such plasmas
and subsequently analyze them in the context of small perturbations, drawing parallels
with the analysis of sound waves.

1. The mass conservation equation, representing the conservation of mass in the
plasma, is given by:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌v) = 0 (2.1)

where 𝜌 is the plasma density, and v is the velocity field.

2. The momentum conservation equation, reflecting the balance of forces in the
plasma, is:

𝜌
𝜕v
𝜕𝑡

+ 𝜌v · ∇v = −∇𝑃 + 1
4𝜋 (∇ × B) × B (2.2)

where 𝑃 is the pressure, and B is the magnetic field.

3. The adiabaticity condition ensures constant entropy in the system (see appendix):[
𝜕

𝜕𝑡
+ v · ∇

]
𝑃
𝜌𝛾 = 0 (2.3)

4. The induction equation, under the assumption of infinite conductivity, is:

𝜕B
𝜕𝑡

= ∇ × (v × B) (2.4)
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This equation leads to the concept of flux freezing in the plasma, a phenomenon
where magnetic field lines are frozen into the plasma and move with it.

5. Finally, the divergence-free nature of the magnetic field is expressed as:

∇ · B = 0 (2.5)

We assume a background unperturbed stationary state of the plasma given by:

𝜌 = 𝜌0 , 𝑃 = 𝑃0 , v = 0 , B = 𝐵0ẑ (2.6)

In this state, the magnetic field B0 is ordered and aligned along the z-axis, i.e., B0 ≡
(0, 0, 𝐵0), and the plasma is considered at rest in the reference frame v0 = 0 .

As for the sound wave case, we introduce perturbations in these quantities, which can
be decomposed into Fourier modes. This approach simplifies the analysis by breaking
down complex wave patterns into simpler components. Each quantity is assumed to
have the form:

𝛿𝐴 e−𝑖𝜔𝑡+𝑖k·x

Our goal is to derive a dispersion relation ℱ (𝑘, 𝜔) = 0 for the allowed modes in the
system.

By linearizing the motion equations and discarding second-order perturbations or
higher, we obtain:

−𝑖𝜔𝛿𝜌 + 𝑖𝜌0k · 𝛿v = 0 (2.7)

−𝑖𝜔𝜌0𝛿v = −𝑖k𝛿𝑃 + 𝑖
4𝜋 (k × 𝛿B) × B0 (2.8)

−𝑖𝜔𝛿𝑃𝜌−𝛾 + 𝑖𝜔𝑃𝛾𝜌−𝛾−1𝛿𝜌 = 0 (2.9)

−𝑖𝜔𝛿B = 𝑖k × (𝛿v × B0) (2.10)

k · 𝛿B = 0 (2.11)

Equation (2.11) implies that for all modes, the wave vector k is perpendicular to the
perturbation in the magnetic field, i.e. k ⊥ 𝛿B.

Equation (2.9) can be expressed as:

𝛿𝑃
𝛿𝜌

=
𝛾𝑃0

𝜌0
≡ 𝑐2

𝑠 (2.12)

illustrating that in terms of pressure and density perturbations the plasma behaves as
sound hydro-waves.

Now, substituting the derived expressions for perturbations into Eq. 2.8, we obtain an
equation for 𝛿v only:

− 𝑖𝜔𝜌𝛿v = −𝑖k𝑐2
𝑠
𝜌

𝜔
(k · 𝛿v) − 𝑖

4𝜋𝜔 [k × (k × (𝛿v × B0))] × B0 (2.13)
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which simplifies to:

𝛿v =
𝑐2
𝑠

𝜔2 k(k · 𝛿v) + 1
4𝜋𝜌𝜔2 [k × (k × (𝛿v × B0))] × B0 (2.14)

This allows us to solve for 𝛿v and subsequently derive all other perturbed quantities.

Considering the simplifying assumption k ‖ B0, we have k = (0, 0, 𝑘). This leads to:

[k × [k × (𝛿v × B0)]] × B0 =
©«
𝑘2𝐵2

0𝛿𝑣𝑥
−𝑘2𝐵2

0𝛿𝑣𝑦
0

ª®®¬ (2.15)

From this, we can express the perturbations as:

©«
𝛿𝑣𝑥
𝛿𝑣𝑦
𝛿𝑣𝑧

ª®®¬ =
𝑘2𝑐2

𝑠

𝜔2

©«
0
0
𝛿𝑣𝑧

ª®®¬ +
𝑘2𝐵2

0
4𝜋𝜌𝜔2

©«
𝛿𝑣𝑥
𝛿𝑣𝑦
0

ª®®¬ (2.16)

This leads to the distinction between oscillations:

• For parallel oscillations (𝛿𝑣𝑧), we find sound waves with the dispersion relation:

𝜔2 = 𝑐2
𝑠 𝑘

2 (2.17)

• For perpendicular oscillations (𝛿𝑣𝑥 , 𝛿𝑣𝑦), we find Alfvén waves with:

𝜔2 =
𝑘2𝐵2

0
4𝜋𝜌 (2.18)

These Alfvén waves are characterized by the relation:

𝜔2 = 𝑣2
𝐴𝑘

2 (2.19)

where the Alfvén velocity 𝑣𝐴 is defined as 𝑣𝐴 = 𝐵0√
4𝜋𝜌

.

In summary, perturbing a magnetized fluid with parallel perturbations (k ‖ B0) results
in two types of waves: sound waves moving parallel to B0 and Alfvén waves moving
perpendicular to B0.

We are considering now the case when k ⊥ B0, in particular we assume k = (𝑘, 0, 0) .

The nested vector products calculation simplifies to:

[k × [k × (𝛿v × B0)]] × B0 =

�������
�̂� �̂� �̂�

0 𝑘2𝐵0𝛿𝑣𝑥 0
0 0 𝐵0

������� = ©«
𝑘2𝐵2

0𝛿𝑣𝑥
0
0

ª®®¬ (2.20)
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This leads to the following expression for the perturbations:

©«
𝛿𝑣𝑥
𝛿𝑣𝑦
𝛿𝑣𝑧

ª®®¬ =
𝑐2
𝑠 𝑘

2

𝜔2

©«
𝛿𝑣𝑥
0
0

ª®®¬ +
𝑘2𝐵2

0
4𝜋𝜌

©«
𝛿𝑣𝑥
0
0

ª®®¬ (2.21)

This result indicates that the transported perturbations are parallel to the �̂� axis. From
this, we can derive the following relation for the velocity of these perturbations:

𝑣2 = 𝑐2
𝑆 + 𝑣2

𝐴 (2.22)

This equation reveals that the speed of magnetosonic modes is a combination of the
sound speed (𝑐2

𝑆) and the Alfvén speed (𝑣2
𝐴). Magnetosonic modes, therefore, represent

a unique type of wave in ideal MHD, characterized by their dependence on both the
fluid’s sound speed and the magnetic field’s Alfvén speed.

In conclusion, in unmagnetized fluids, small perturbations propagate isotropically as
sound waves. The introduction of a magnetic field into the system not only increases the
diversity of possible wave modes but also introduces anisotropy to wave propagation,
which now becomes dependent on the orientation relative to the magnetic field.

Moreover, the presence of a magnetic field induces an electric field in the Galactic frame,
perpendicular to both B0 and 𝛿v. In the context of Alfvén waves, this induced electric
field possesses a strength on the order of 𝑣𝐴

𝑐 𝐵0, which is small for most astrophysical
plasmas. This electric field plays a pivotal role in the so-called second-order Fermi re-
acceleration, a mechanism where charged particles gain energy in a stochastic manner
through interactions with these weak electric fields (see section X).

U Charged Particle Motion in Turbulent Magnetic Fields

Here we explore the interaction between a charged particle and an astrophysical plasma
to derive the spatial diffusion coefficient using the quasilinear theory (QLT). QLT allows
to directly compute this coefficient and other transport parameters based on the previous
knowledge of the turbulent spectra. The quasilinear approximation can be seen as a
first-order perturbation theory and here we follow standard derivations as in [?, ?, ?].

First, we consider the equations of motion for a particle traveling within an ordered
magnetic field aligned with the ẑ axis, denoted as B0 = 𝐵0ẑ. In the absence of a large-
scale electric field, the particle’s motion is described by the Lorentz force:

𝑑p
𝑑𝑡

=
𝑞
𝑐
(v × B0) (2.23)

The Lorentz force acts perpendicular to the particle’s motion, preserving the velocity’s
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magnitude (see appendix). By splitting the motion into its components, we obtain:

𝑚𝛾
𝑑v
𝑑𝑡

=
𝑞
𝑐
(v × B0) →


𝑚𝛾 𝑑𝑣𝑥

𝑑𝑡 = 𝑞
𝑐 𝑣𝑦𝐵0

𝑚𝛾
𝑑𝑣𝑦
𝑑𝑡 = − 𝑞

𝑐 𝑣𝑥𝐵0
𝑑𝑣𝑧
𝑑𝑡 = 0

(2.24)

The last equation shows that 𝑣𝑧 = 𝑣‖ = 𝑣 cos𝜃 remains constant. Consequently, the
pitch angle, defined as the cosine of the angle between the particle velocity and the
magnetic field direction (𝜇 = cos𝜃), is a conserved quantity, as 𝑑𝑣𝑧/𝑑𝑡 = 𝑣𝑑𝜇/𝑑𝑡 = 0.

Combining the first two equations yields two second-order differential equations:

𝑑2𝑣𝑥,𝑦
𝑑𝑡2

= −Ω2𝑣𝑥,𝑦 (2.25)

Here, we introduce the Larmor frequency

Ω =
𝑞𝐵0

𝑚𝛾𝑐
' 10−2𝑍

(
𝐵0
𝜇G

) (
𝐸

GeV

)−1
rad s−1 (2.26)

Introduce here the Larmor radius...

This equation can be easily solved as simple harmonic motion along the x̂ axis, where
𝑣𝑥 = 𝑣0,𝑥 cos(Ω𝑡). Using this solution, we can solve the system (2.24) as follows:

𝑣𝑥 = 𝑣0,⊥ cos
(
𝜙 −Ω𝑡

)
𝑣𝑦 = −𝑣0,⊥ sin

(
𝜙 −Ω𝑡

)
𝑣𝑧 = 𝑣0,‖

→

𝑣𝑥 = 𝑣0(1 − 𝜇2) 1

2 cos
(
𝜙 −Ω𝑡

)
𝑣𝑦 = −𝑣0(1 − 𝜇2) 1

2 sin
(
𝜙 −Ω𝑡

)
𝑣𝑧 = 𝑣0𝜇

(2.27)

Here, 𝜙 is an arbitrary phase, 𝑣0,⊥ represents the initial velocity of the particle in the
𝑥𝑦-plane, given by 𝑣0,⊥ = 𝑣0 sin𝜃 = 𝑣0(1 − 𝜇2)1/2.

The solution above represents a helical motion with a uniform drift along ẑ, described
by the equation of motion 𝑧 = 𝑣𝜇𝑡.

Now we consider introducing a perturbation to the magnetic field with components
𝛿B ≡ (𝛿B𝑥 , 𝛿B𝑦 , 𝛿B𝑧), where |𝛿B| � |B0 |. In this case, we assume a pure Alfvénic wave
propagating along the background magnetic field, which implies 𝛿B𝑧 = 0 and the wave
oscillates such that 𝛿B ⊥ k.

This allows us to express the system of equations (2.23) as follows:

𝑚𝛾
𝑑v
𝑑𝑡

=
𝑞
𝑐

©«
x̂ ŷ ẑ
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝛿B𝑥 𝛿B𝑦 B0

ª®®¬
𝛿B�B0' 𝑞

𝑐

©«
𝑣𝑦B0

−𝑣𝑥B0

𝑣𝑥𝛿B𝑦 − 𝑣𝑦𝛿B𝑥

ª®®¬ (2.28)

As prescribed by QLT, we neglect the perturbation field in the 𝑥 and 𝑦 components.
This implies that the circular orbits in the plane perpendicular to the background field

36



HE-AP Th Charged Particle Motion in Turbulent Magnetic Fields

are approximately unaffected. However, the perturbation does cause a change in the 𝑧
component of the velocity, leading to a modification in the pitch angle 𝜇 of the particle.
It’s important to note that the perturbation does not affect the particle’s momentum
value; we are describing the motion in the reference frame of the perturbation, where
the only force acting on the particle is the Lorentz force. Consequently, while numerous
pitch-angle changes can eventually reverse the parallel velocity of the particle, they
cannot shift the guiding center of the orbits.

To examine the extent of this change, we focus on the last equation of the system
mentioned above, which governs the perturbed motion along 𝑧:

𝑚𝛾
𝑑𝑣𝑧
𝑑𝑡

=
𝑞
𝑐

[
𝑣𝑥(𝑡)𝛿B𝑦 − 𝑣𝑦(𝑡)𝛿B𝑥

]
(2.29)

As a consequence, the pitch angle changes with time according to:

𝑚𝛾𝑣
𝑑𝜇
𝑑𝑡

=
𝑞
𝑐
𝑣0,⊥

[
cos

(
𝜙 −Ω𝑡

)
𝛿B𝑦 − sin

(
𝜙 −Ω𝑡

)
𝛿B𝑥

]
(2.30)

To proceed, we make the simplifying assumption that the perturbed field is circularly
polarized, meaning the wave components have the same amplitude: |𝛿B𝑥 | = |𝛿B𝑦 | =
|𝛿B|. Thus, we can express the perturbation as:

𝛿B𝑦 = 𝛿B exp [𝑖(𝑘𝑧 − 𝜔𝑡)]
𝛿B𝑥 = ±𝑖𝛿B

(2.31)

Taking the real part gives: 
𝛿B𝑦 = 𝛿B cos(𝑘𝑧 − 𝜔𝑡)
𝛿B𝑥 = ∓𝛿B sin(𝑘𝑧 − 𝜔𝑡)

(2.32)

therefore, by substituting in equation (2.30), we find

𝑚𝛾𝑣
𝑑𝜇
𝑑𝑡

=
𝑞
𝑐
𝑣0,⊥𝛿B

[
cos

(
𝜙 −Ω𝑡

)
cos(𝑘𝑧 − 𝜔𝑡) ± sin

(
𝜙 −Ω𝑡

)
sin(𝑘𝑧 − 𝜔𝑡)] (2.33)

which simplifies to1:

𝑚𝛾𝑣
𝑑𝜇
𝑑𝑡

=
𝑞
𝑐
𝑣0,⊥𝛿B cos

(
𝜙 −Ω𝑡 ∓ 𝑘𝑧 ± 𝜔𝑡

)
(2.34)

For Alfvén waves, the dispersion relation is given by 𝜔 = 𝑘𝑣A, where 𝑣A represents the
Alfvén velocity. By comparing the spatial frequency with the temporal frequency in the
argument of the cosine function, we can derive the following relation:

𝑘𝑧
𝜔𝑡

' 𝑘𝑣𝜇𝑡
𝑘𝑣A𝑡

∼ 𝑣
𝑣A

𝜇 (2.35)

1We use the trigonometric relation cos 𝛼 cos 𝛽 ± sin 𝛼 sin 𝛽 = cos(𝛼 ± 𝛽)
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Here, we utilize the fact that for an unperturbed orbit, the position 𝑧 of the particle is
given by 𝑧 = 𝑣𝜇𝑡.

Considering that 𝑣 is on the order of the speed of light, while 𝑣A in the average ISM is
approximately 10 km/s, we find that the ratio in equation (2.35) is significantly greater
than 1 unless 𝜇 � 𝑣A/𝑣.

Consequently, we can neglect the term 𝜔𝑡 in comparison to 𝑘𝑧. This choice is equivalent
to selecting a reference frame in which the waves appear stationary. In this frame, there
is no electric field associated with the waves.

We can approximate the pitch angle equation of motion as
𝑑𝜇
𝑑𝑡

' Ω(1 − 𝜇2) 1
2
𝛿B
B0

cos
[
𝜙 + (Ω ± 𝑘𝑣𝜇)𝑡] (2.36)

The equation above implies a periodic variation in the pitch angle. When we integrate
this equation over a sufficiently long time interval, the average of the integrated quantity
becomes zero. This result is physically expected since the particle orbits are concentric
circles.

However, if we instead consider the square of the pitch-angle variation:

〈Δ𝜇Δ𝜇〉 =
∫ 2𝜋

0

𝑑𝜙
2𝜋

∫ Δ𝑡

0
𝑑𝑡
𝑑𝜇
𝑑𝑡

(𝑡)
∫ Δ𝑡

0
𝑑𝑡′
𝑑𝜇
𝑑𝑡

(𝑡′)

= Ω2(1 − 𝜇2)
(
𝛿B
B0

)2 ∫ Δ𝑡

0
𝑑𝑡

∫ Δ𝑡

0
𝑑𝑡′ cos[(Ω ± 𝑘𝑣𝜇)𝑡] cos[(Ω ± 𝑘𝑣𝜇)𝑡′] (2.37)

The integrand functions are even, so we can double the interval of the 𝑑𝑡′ integral as∫ Δ𝑡
−Δ𝑡 𝑑𝑡

′ and add a factor of 1
2 . Additionally, as we are considering sufficiently large times

to evaluate the effect of scattering (Δ𝑡 � 𝑡 , 𝑡′), the same interval can be approximated
as

∫ ∞
−∞ 𝑑𝑡

′.

Therefore, we have2:

〈Δ𝜇Δ𝜇〉 =

Ω2 (1 − 𝜇2)
2

(
𝛿B
B0

)2 ∫ Δ𝑡

0
𝑑𝑡 Re{exp[𝑖(Ω ± 𝑘𝑣𝜇)𝑡]}

∫ ∞

−∞
𝑑𝑡′ Re{exp[𝑖(Ω ± 𝑘𝑣𝜇)𝑡′]} (2.38)

and solve the integral on 𝑡′3, as to obtain:

〈Δ𝜇Δ𝜇〉 = Ω2 (1 − 𝜇2)
2

(
𝛿B
B0

)2 ∫ Δ𝑡

0
𝑑𝑡 Re{exp[𝑖(Ω ± 𝑘𝑣𝜇)𝑡]} 2𝜋𝛿(Ω ± 𝑘𝑣𝜇) (2.39)

Now the second integral, because of the presence of the delta function, gives just a factor∫ Δ𝑡
0 𝑑𝑡 = Δ𝑡, and we find:

𝐷𝜇𝜇 ≡
〈
Δ𝜇Δ𝜇
Δ𝑡

〉
= Ω2

(
𝛿B
B0

)2
(1 − 𝜇2)𝜋𝛿(Ω ± 𝑘𝑣‖) (2.40)

2We are grateful to A. Marcowith for providing clarification on this passage.
3We use the property 𝛿(𝑥 − 𝑎) = 1

2𝜋
∫ ∞
−∞ 𝑑𝑦e𝑖𝑦(𝑥−𝑎)

38



HE-AP Th Charged Particle Motion in Turbulent Magnetic Fields

where 𝐷𝜇𝜇 represents the average rate of change of the square of the pitch angle over
the time interval Δ𝑡.

We see that on average 𝜇 remains constant, but its variance linearly grows with time:
This is the typical behaviour of a diffusive process (see appendix).

In general, one must consider a packet of turbulent waves with energy distribution
per wave number denoted as 𝑊(𝑘)𝑑𝑘. This distribution represents the energy density
contained within the range of wavenumbers [𝑘, 𝑘 + 𝑑𝑘] and is normalized to the energy
density of the background magnetic field, 𝐵

2
0

8𝜋 . Specifically:(
𝛿B(𝑘)

B0

)2
=𝑊(𝑘)𝑑𝑘. (2.41)

By incorporating this consideration, we can extend equation (2.40) to obtain:

𝐷𝜇𝜇 ≡
〈
Δ𝜇Δ𝜇
Δ𝑡

〉
= Ω2(1 − 𝜇2)𝜋

∫
𝑑𝑘𝑊(𝑘)𝛿(Ω ± 𝑘𝑣‖) . (2.42)

Introducing the resonant wavenumber 𝑘res, defined as the inverse of the Larmor radius
𝑘res = 𝑟−1

L = Ω𝑣‖ , we can express 𝐷𝜇𝜇 as follows4:

𝐷𝜇𝜇 = Ω(1 − 𝜇2)𝜋𝑘res

∫
𝑑𝑘𝑊(𝑘)𝛿(𝑘 ± 𝑘res) = Ω(1 − 𝜇2)𝜋𝑘res𝑊(𝑘res) (2.43)

These equations reveal that a wave-particle interaction is only possible when the inverse
Larmor radius of the particle matches (i.e., is resonant) with the wavenumber of the
turbulent wave (modulo a geometric projection). This type of process is commonly
referred to as gyroresonant scattering5.

The typical diffusion time, defined as the timescale to invert the pitch angle by about
one radian is

𝜏diff ' 1
𝐷𝜃𝜃

=
1 − 𝜇2

𝐷𝜇𝜇
=

1
𝜋Ω𝑘res𝑊(𝑘res) (2.44)

where 𝐷𝜃𝜃 is the diffusion coefficient in angle.

As in a diffusion timescale the particle moves by a distance of about Δ𝑧 = 𝑣𝜏diff, the
spatial diffusion coefficient coefficient can be roughly estimated as

𝐷𝑧𝑧 ' 𝑣(𝑣𝜏diff) = 𝑣2

𝜋Ω𝑘res𝑊(𝑘res) '
1
3 𝑟L𝑣

1
𝑘res𝑊(𝑘res) = 𝐷B

1
𝑘res𝑊(𝑘res) (2.45)

which informs us that the spatial diffusion coefficient is always much larger than the
Bohm diffusion (𝐷B) since 𝑘res𝑊(𝑘res) � 1 as a consequence of QLT proposition.

4We use the property
∫
𝑑𝑥𝛿(𝑐𝑥) = 1

|𝑐 |
∫
𝑑𝑥𝛿(𝑥)

5It is worth noting that the QLT is consistently inadequate when attempting to describe pitch-angle
diffusion at 90 degrees (𝜇 = 0) and reversing direction becomes a consideration. To address these and other
limitations, several Nonlinear Theories have been formulated and developed.
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Consequences for Galactic transport...

The spectral density 𝑊(𝑘) exhibits a power-law behavior within the so-called inertial
range, spanning from an outer scale (characterized by low 𝑘, signifying the injection
scale of turbulence) to a smaller scale (with large 𝑘, where dissipative effects become
significant).

In a turbulence regime where𝑊(𝑘) is proportional to 𝑘−𝛼, the spatial diffusion coefficient
𝐷𝑧𝑧 displays a dependency on rigidity 𝑅 that follows the relation 𝐷𝑧𝑧 ∝ 𝑅2−𝛼.

A classical turbulence model, influenced by hydrodynamic principles, is the Kolmogorov
model. It is characterized by 𝛼 = 5/3, leading to a rigidity dependence of the diffusion
coefficient expressed as 𝐷𝑧𝑧 ∝ 𝑅1/3. This model reflects a scenario where smaller eddies
are successively generated from larger ones in a cascading process.

On the other hand, the Kraichnan model, another well-established theory in turbulence,
suggests 𝛼 = 3/2. In this framework, 𝐷𝑧𝑧 shows a different rigidity dependency, follow-
ing the relation 𝐷𝑧𝑧 ∝ 𝑅1/2. This model is indicative of a more rapid energy transfer
across scales compared to the Kolmogorov model.

What happens when 𝜇 → 0 or when 𝑘res > 𝑘0?

U The Advection-Diffusion Equation

Consider a beam of particles exhibiting a range of pitch angles. We aim to understand
the evolution of this beam due to resonance effect introduced before. The transport
equation that we obtain will bridge the gap between microphysics and macrophysics in
this context.

The key quantity here is the phase-space density, 𝑓 = 𝑓 (x, p, 𝑡), defined so that the
number 𝑑𝑁 of particles at time 𝑡 is a given phase-space volume element is

𝑓 ≡ 𝑑𝑁
𝑑3x𝑑3p

Note that 𝑓 is relativistic invariant, since both the number of particles and the phase-
space element (see appendix) are relativistic invariants.

To streamline our analysis, we make the following assumptions:

𝑓 (x, p, 𝑡) → 𝑓 (𝑧, 𝜇, 𝑡) (2.46)

Here, the motion is predominantly in the 𝑧 direction, Alfvén waves are stationary
(thereby keeping |𝑝 | constant), and azimuthal symmetry is assumed (making 𝜇 the
relevant angle).
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O The Diffusion Equation in Pitch Angle

We aim at describing the evolution of the function 𝑓 over a time interval Δ𝑡:

𝑓 (𝑧, 𝜇, 𝑡) → 𝑓 (𝑧 + 𝑣𝜇Δ𝑡 , 𝜇, 𝑡 + Δ𝑡) (2.47)

To facilitate this, we introduce Ψ(𝜇,Δ𝜇), a function representing the likelihood of a par-
ticle altering its angle by an amount Δ𝜇 . This probability obeys the integral constraint:∫

Ψ(𝜇,Δ𝜇)𝑑Δ𝜇 = 1, ∀𝜇 (2.48)

Thus, the evolved function can be expressed as an integral over all potential variations
of Δ𝜇 leading to 𝜇:

𝑓 (𝑧 + 𝑣𝜇Δ𝑡 , 𝜇, 𝑡 + Δ𝑡) =
∫

𝑑Δ𝜇 𝑓 (𝑧, 𝜇 − Δ𝜇, 𝑡)Ψ(𝜇 − Δ𝜇,Δ𝜇) (2.49)

Assuming small variations, we apply perturbation theory and perform a second-order
Taylor expansion.

For the LHS:
𝑓 (𝑧 + 𝑣𝜇Δ𝑡 , 𝜇, 𝑡 + Δ𝑡) = 𝑓 + 𝜕 𝑓

𝜕𝑧
𝑣𝜇Δ𝑡 + 𝜕 𝑓

𝜕𝑡
Δ𝑡 (2.50)

For the RHS, we consider:

𝑓 (𝑧, 𝜇 − Δ𝜇, 𝑡) = 𝑓 − 𝜕 𝑓
𝜕𝜇

Δ𝜇 + 1
2
𝜕2 𝑓

𝜕𝜇2Δ𝜇Δ𝜇 (2.51)

and
Ψ(𝜇 − Δ𝜇,Δ𝜇) = Ψ − 𝜕Ψ

𝜕𝜇
Δ𝜇 + 1

2
𝜕2Ψ
𝜕𝜇2 Δ𝜇Δ𝜇 (2.52)

Inserting these into equation (2.49) and retaining only terms up to second order, we
obtain:

𝜕 𝑓
𝜕𝑡

Δ𝑡 + 𝑣𝜇𝜕 𝑓
𝜕𝑧

Δ𝑡 = − 𝜕

𝜕𝜇
(A 𝑓 ) + 1

2
𝜕2

𝜕𝜇2 (ℬ 𝑓 ) (2.53)

Here, we have used that:

𝜕2

𝜕𝜇2 (Ψ 𝑓 ) = 𝜕2 𝑓

𝜕𝜇2Ψ + 2
𝜕 𝑓
𝜕𝜇

𝜕Ψ
𝜕𝜇

+ 𝑓
𝜕2Ψ
𝜕𝜇2 (2.54)

and we have defined the mean value of Δ𝜇 as:

A(𝜇) ≡
∫

𝑑Δ𝜇Δ𝜇Ψ (2.55)

and the variance as:
ℬ(𝜇) ≡

∫
𝑑Δ𝜇Δ𝜇Δ𝜇Ψ (2.56)
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Let’s integrate the concept of detailed balance into our analysis, applying it to the proba-
bility distribution Ψ:

Ψ(𝜇,−Δ𝜇) = Ψ(𝜇 − Δ𝜇,Δ𝜇) (2.57)

By Taylor expanding this expression, we further elucidate its implications:

Ψ(𝜇,−Δ𝜇) = Ψ(𝜇 − Δ𝜇,Δ𝜇) = Ψ(𝜇,Δ𝜇) − 𝜕Ψ
𝜕𝜇

Δ𝜇 + 1
2
𝜕2Ψ
𝜕𝜇2 Δ𝜇

2 (2.58)

Integrating equation (2.58) over 𝑑Δ𝜇 and using the general property in equation (2.48):

− 𝜕

𝜕𝜇

(∫
𝑑Δ𝜇ΨΔ𝜇

)
+ 1

2
𝜕2

𝜕𝜇2

(∫
𝑑Δ𝜇Δ𝜇2Ψ

)
=
����������:1∫

𝑑Δ𝜇Ψ(𝜇,−Δ𝜇) −
���������:1∫

𝑑Δ𝜇Ψ(𝜇,Δ𝜇) = 0

(2.59)
we recognize that we can write as:

𝜕

𝜕𝜇

[
A − 1

2
𝜕ℬ
𝜕𝜇

]
= 0 (2.60)

It implies that the quantity A − 1
2
𝜕ℬ
𝜕𝜇 must be a constant with respect to 𝜇.

We compute explicitly the derivative of ℬ with respect to 𝜇 as

𝜕𝐵
𝜕𝜇

=
𝜕

𝜕𝜇

∫
𝑑Δ𝜇Δ𝜇Δ𝜇Ψ(𝜇,Δ𝜇) =

∫
𝑑Δ𝜇Δ𝜇Δ𝜇

𝜕

𝜕𝜇
Ψ(𝜇,Δ𝜇) (2.61)

By invoking the principle of detailed balance again, we obtain:

𝜕Ψ
𝜕𝜇

(𝜇,Δ𝜇) = 𝜕Ψ
𝜕𝜇

(𝜇 + Δ𝜇,−Δ𝜇) = − 𝜕

𝜕Δ𝜇
Ψ(𝜇 + Δ𝜇,−Δ𝜇) (2.62)

Incorporating this into the definition of 𝜕𝐵
𝜕𝜇 , we find:

𝜕ℬ
𝜕𝜇

= −
∫

𝑑Δ𝜇Δ𝜇Δ𝜇
𝜕

𝜕Δ𝜇
Ψ(𝜇 + Δ𝜇,−Δ𝜇) (2.63)

Integrating by parts, we find:

𝜕ℬ
𝜕𝜇

=
∫

𝑑Δ𝜇Ψ(𝜇 + Δ𝜇,−Δ𝜇) 𝜕

𝜕Δ𝜇
(Δ𝜇Δ𝜇) = 2

∫
𝑑Δ𝜇Δ𝜇Ψ(𝜇 + Δ𝜇,−Δ𝜇) (2.64)

Finally, invoking again the property of the detailed balance:

𝜕ℬ
𝜕𝜇

= 2
∫

𝑑Δ𝜇Δ𝜇Ψ(𝜇,Δ𝜇) = 2A (2.65)

Substituting this back into the equation 2.53 governing 𝑓 , we arrive at:

𝜕 𝑓
𝜕𝑡

Δ𝑡 + 𝑣𝜇𝜕 𝑓
𝜕𝑧

Δ𝑡 = Δ𝑡
𝜕

𝜕𝜇

[
𝐷𝜇𝜇

𝜕 𝑓
𝜕𝜇

]
(2.66)
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Here, the RHS includes the pitch angle diffusion coefficient, representing a collision term:

𝐷𝜇𝜇 ≡ 1
2 〈

Δ𝜇Δ𝜇
Δ𝑡

〉 = 1
2

∫
𝑑Δ𝜇

Δ𝜇Δ𝜇
Δ𝑡

Ψ (2.67)

This leads us to understand how the distribution 𝑓 evolves due to pitch angle diffu-
sion:

𝜕 𝑓
𝜕𝑡

+ 𝑣𝜇𝜕 𝑓
𝜕𝑧

=
𝜕

𝜕𝜇

[
𝐷𝜇𝜇

𝜕 𝑓
𝜕𝜇

]
(2.68)

We have formulated a Fokker-Planck equation that characterizes the distribution’s pitch
angle diffusion over time, influenced by Alfvén waves present in the plasma. This
equation exemplifies typical diffusive processes, where the variance of the distribution
increases proportionally with time.

Crucially, the term 𝐷𝜇𝜇 in the equation represents a form of collision term. However,
unlike conventional collisions involving atoms, this term describes the effect of scattering
due to Alfvén waves.

The diffusion coefficient𝐷𝜇𝜇, encapsulating the microphysical interactions, is computed
for a background of Alfvén waves and is proportional to (1 − 𝜇2)𝐹(𝑘, 𝑝). This formula
reflects the nuanced interplay between the pitch angle𝜇 and the wave-particle dynamics.

Given this dynamic, we expect the particle distribution to become isotropic over time,
especially in the reference frame of the Alfvén waves. This isotropization signifies a
uniform distribution of particle velocities in all directions, relative to the wave frame.

To transition from pitch angle diffusion to spatial diffusion, we consider the inherent
nature of diffusive processes, which strive to make any system as isotropic as possible.
In the context of Alfvén waves, this isotropization leads to a residual anisotropy pro-
portional to the ratio of the Alfvén speed (𝑣𝐴) to the speed of light (𝑐). This outcome
illustrates the profound impact of diffusion in a plasma, where cosmic rays, typically
near light-speed, collectively move at the slower Alfvén speed.

After establishing diffusion, we assume the distribution 𝑓 in phase space becomes
isotropic, with a slight anisotropy represented as:

𝑓 = 𝑀 + 𝑓1𝜇

Here, 𝑓1𝜇 corresponds to the anisotropy, a dipole effect induced by the motion of the
Alfvén waves relative to the observer’s frame of reference. This anisotropy is a subtle
yet significant manifestation of the dynamic interaction between particles and the wave
environment in a plasma.
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O The Diffusion Equation in Space

Now, we shift our focus from pitch angle diffusion to spatial diffusion. We consider the
case where the function 𝑓 is only weakly dependent on the pitch angle 𝜇. In fact, we
found that such a distribution is expected to become isotropized by the scattering with
waves, moreover the anisotropy observed in cosmic rays is ∼ 10−4 at all energies.

To transition from pitch angle distribution to spatial diffusion, we apply the operator
1
2

∫ 1
−1 𝑑𝜇 to all terms of equation (2.68). We also introduce a new definition:

𝑀 =
1
2

∫ 1

−1
𝑑𝜇 𝑓 (𝜇) (2.69)

Notice that if 𝑓 remains constant with respect to 𝜇, then 𝑀 simplifies to 𝑓 itself. Essen-
tially, 𝑀 extracts the isotropic component of 𝑓 .

Upon applying this operator, we derive:

𝜕𝑀
𝜕𝑡

+ 𝑣
2

𝜕

𝜕𝑧

∫ 1

−1
𝑑𝜇𝜇 𝑓 =

[
𝐷𝜇𝜇

𝜕 𝑓
𝜕𝜇

]1

−1
' 0 (2.70)

This result emerges because the diffusion coefficient 𝐷𝜇𝜇 is proportional to (1 − 𝜇2).
Moreover, as 𝑓 becomes isotropic, the term 𝜕 𝑓

𝜕𝜇 tends towards zero as well.

Let’s introduce a new term to represent the flux of particles (i.e., a current):

1
2

∫ 1

−1
𝑑𝜇 𝑣𝜇 𝑓 = 𝐽 (2.71)

With this in mind, the evolution of 𝑀 can be expressed as:

𝜕𝑀
𝜕𝑡

+ 𝜕𝐽
𝜕𝑧

= 0 (2.72)

This equation implies that changes in 𝑀 over time are directly linked to the spatial
gradients of the current, 𝐽. In other words, 𝑀 evolves over time only if there is a
corresponding change in the current.

Now, let’s focus on the current 𝐽 itself:

𝐽 =
1
2𝑣

∫ 1

−1
𝑑𝜇 𝑓 𝜇 = −𝑣4

∫ 1

−1
𝑑𝜇 𝑓

𝜕

𝜕𝜇
(1 − 𝜇2) (2.73)

hence

𝐽 =
���������[
−𝑣4 (1 − 𝜇2) 𝑓

]+1

−1
+ 𝑣

4

∫ +1

−1
𝑑𝜇 (1 − 𝜇2)𝜕 𝑓

𝜕𝜇
(2.74)

The equation leverages the identity 𝜇 = − 1
2

𝜕
𝜕𝜇 (1−𝜇2), a mathematical manipulation that

simplifies the expression.
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By integrating this equation from −1 to 𝜇, we get:

𝜕

𝜕𝑡

∫ 𝜇

−1
𝑑𝜇′ 𝑓 +

∫ 𝜇

−1
𝑑𝜇′𝑣𝜇′𝜕 𝑓

𝜕𝑧
= 𝐷𝜇𝜇

𝜕 𝑓
𝜕𝜇

(2.75)

Multiplying this equation by 1−𝜇2

𝐷𝜇𝜇
and assuming that 𝑓 is isotropic in all quantities where

𝜇 does not appear explicitly, we obtain:

(1 − 𝜇2)𝜕 𝑓
𝜕𝜇

=
1 − 𝜇2

𝐷𝜇𝜇

𝜕𝑀
𝜕𝑡

(1 + 𝜇) + 𝑣 𝜕𝑀
𝜕𝑧

1
2 (𝜇

2 − 1) (1 − 𝜇2)
𝐷𝜇𝜇

(2.76)

Further integrating this equation over 𝜇, we derive:∫ +1

−1
𝑑𝜇(1 − 𝜇2)𝜕 𝑓

𝜕𝜇
=

𝜕𝑀
𝜕𝑡

∫ +1

−1
𝑑𝜇

(1 − 𝜇2)
𝐷𝜇𝜇

(1 + 𝜇) − 1
2𝑣

𝜕𝑀
𝜕𝑧

∫ +1

−1
𝑑𝜇

(1 − 𝜇2)2
𝐷𝜇𝜇

(2.77)

Using equation (2.74), we find the expression for the current 𝐽:

𝐽 =
𝑣
4
𝜕𝑀
𝜕𝑡

∫ +1

−1
𝑑𝜇

(1 − 𝜇2)
𝐷𝜇𝜇

(1 + 𝜇) − 𝑣2

8
𝜕𝑀
𝜕𝑧

∫ +1

−1
𝑑𝜇

(1 − 𝜇2)2
𝐷𝜇𝜇

(2.78)

We introduce two new quantities, 𝐾𝑡 and 𝐾𝑧 , defined as:

𝐾𝑡 ≡ 𝑣
4

∫ +1

−1
𝑑𝜇

(1 − 𝜇2)(1 + 𝜇)
𝐷𝜇𝜇

(2.79)

𝐾𝑧 ≡ 𝑣2

8

∫ +1

−1
𝑑𝜇

(1 − 𝜇2)2
𝐷𝜇𝜇

(2.80)

Finally, applying these to equation (2.72), we reach the following conclusion:

𝜕𝑀
𝜕𝑡

=
𝜕

𝜕𝑧

[
𝐾𝑡

𝜕𝐽
𝜕𝑧

+ 𝐾𝑧 𝜕𝑀
𝜕𝑧

]
(2.81)

We can estimate the magnitudes of the terms in the diffusion equation:

𝐾𝑡
𝜕𝐽
𝜕𝑧

∼ 𝑣
𝐷𝜇𝜇

𝐽
𝑧

(2.82)

𝐾𝑧
𝜕𝑀
𝜕𝑧

∼ 𝑣
𝐷𝜇𝜇

𝑣𝑀
𝑧

(2.83)

Based on the definition in equation (2.71), we can express the current 𝐽 as follows:

𝐽 =
1
2

∫ 1

−1
𝑑𝜇 𝑣𝜇 𝑓 ' 1

2

∫ 1

−1
𝑑𝜇 𝑣𝜇( 𝑓0 + 𝜇 𝑓1) (2.84)

Here, 𝑓1 � 𝑓0 = 𝑀 due to the near-isotropic nature of the distribution function, allowing
for a linear expansion.
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HE-AP Th The Advection-Diffusion Equation

This leads us to:

𝐽 =
𝑣
2

[
𝑓0
�
�
�
��∫ 1

−1
𝑑𝜇𝜇 + 𝑓1

∫ 1

−1
𝑑𝜇𝜇2

]
∼ 𝑣 𝑓1 � 𝑣𝑀 (2.85)

Since 𝑓1 is much smaller than 𝑓0, this implies that 𝐽 is significantly smaller than 𝑣𝑀.

With these considerations, in good approximation, we can write an equation for the
time evolution of the isotropic component of the distribution function, 𝑀, as:

𝜕𝑀
𝜕𝑡

' 𝜕

𝜕𝑧

[
𝐾𝑧

𝜕𝑀
𝜕𝑧

]
(2.86)

The equation we have derived is a classic diffusion equation, where 𝐾𝑧 , as defined earlier,
acts as the spatial diffusion coefficient. This equation is determined by the diffusion
coefficient 𝐾𝑧 , which is intricately linked to the probability distribution function Ψ.
By understanding Ψ, one can deduce 𝐾𝑧 , thereby establishing a connection between
microphysical interactions and their macroscopic implications.

In this context, the diffusive flux 𝐽 is expressed as 𝐽 = −𝐾𝑧 𝜕𝑀𝜕𝑧 . This formulation allows us
to compute the current from the distribution function 𝑀, considering it as a first-order
correction to the particle flux.

This dynamic emerges from the somewhat inhomogeneous nature of the function 𝑓 .
It’s the gradient of 𝑓 that generates a net current, driving the evolution of the isotropic
component 𝑀 over time. The gradient effectively causes a net transport of particles,
leading to changes in the distribution 𝑀 in response to spatial inhomogeneities.

O The Diffusion Equation in Space with Moving Plasma

To be done
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t Particle Acceleration

U How to accelerate cosmic particles?

To be done

U Generalities of stochastic acceleration

Consider a cyclic process in which particles gain energy, requiring a time 𝜏 per cycle.
Each cycle has an escape probability 𝑃esc and an average fractional energy gain per cycle
𝜉.

At each cycle, a particle with initial energy 𝐸𝑛 has a probability 1− 𝑃esc of being acceler-
ated to 𝐸𝑛+1 = (1+ 𝜉)𝐸𝑛 . Thus, the energy of a cosmic particle after 𝑛 acceleration cycles
is:

𝐸𝑛 = 𝐸0(1 + 𝜉)𝑛 (3.1)

The number of cycles needed to reach an energy 𝐸𝑛 from an initial energy 𝐸0 is given
by:

𝑛 =
ln (𝐸𝑛/𝐸0)
ln(1 + 𝜉) (3.2)

This implies that attaining higher energies requires a greater number of cycles.

Assuming a constant escape probability per encounter, the probability for a particle to
remain in the acceleration region after 𝑛 encounters is (1 − 𝑃esc)𝑛 .

Over time, the cumulative fraction of particles with energies exceeding 𝐸 can be com-
puted using the sum of a geometric series with ratio 𝑥 = (1 − 𝑃esc), leading to:

𝑓 (> 𝐸) ∝
∞∑
𝑚=𝑛

(1 − 𝑃esc)𝑚 =
(1 − 𝑃esc)𝑛

𝑃esc
=

(1 − 𝑃esc)
ln(𝐸𝑛/𝐸0)

ln(1+𝜉)

𝑃esc
(3.3)

By utilizing the identity 𝑎ln 𝑏 = 𝑏ln 𝑎 , we arrive at:

𝑓 (> 𝐸) ∝ 1
𝑃esc

(
𝐸
𝐸0

)𝛾
where 𝛾 =

ln(1 − 𝑃esc)
ln(1 + 𝜉) ' −𝑃esc

𝜉
(3.4)
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HE-AP Th Second-Order Fermi Mechanism

Here we used the approximation, 𝜉 � 1 and 𝑃esc � 1. Notice that this approach results
in a power-law distribution for both first- and second-order Fermi mechanisms.

The maximum energy achievable in this statistical model is constrained by the finite
lifetime of the accelerator, corresponding to a maximum of 𝑛 ∼ 𝑇/𝜏 cycles. Another
limiting factor could be an increase in the escape probability with energy, such as in
scenarios involving energy losses, which eventually counterbalances the energy gain.

U Second-Order Fermi Mechanism

In 1949, Fermi proposed a physical system where this mechanism for particle acceler-
ation can take place. In particular, he postulated the existence of an inhomogeneous
interstellar medium, hence the presence of magnetic clouds moving in random direc-
tions relative to the Galactic frame. These clouds, carrying magnetic fields, can reflect
incoming charged particles.

The acceleration mechanism works as follows: particles gain energy when they encounter a
magnetic cloud moving towards them and lose energy in encounters with clouds moving away.
Aggiungi plot. Due to the greater frequency of head-on encounters compared to tail-on
ones, there is an overall increase in energy.

To calculate the energy gain or loss per encounter, we use a double change of reference
frame. We denote quantities in the cloud frame with primes and those in the Galactic
frame without.

A test particle with initial energy 𝐸 encounters a magnetic cloud moving with a velocity
factor 𝛽 = 𝑉/𝑐 along 𝑥. An observer on the cloud sees the following1:

𝐸′ = 𝛾(𝐸 − 𝛽𝑝𝑥) = 𝛾𝐸
(
1 − 𝛽

𝑝𝑥
𝐸

)
= 𝛾𝐸 (1 − 𝛽𝜇in) (3.5)

where −1 ≤ 𝜇in ≤ 1 is the cosine of the angle between particle velocity and cloud
velocity.

Upon reflection by the cloud, the particle’s energy, as observed externally, becomes:

𝐸′′ = 𝛾𝐸′(1 + 𝛽𝜇′
out) = 𝛾2𝐸

[
1 − 𝛽𝜇in + 𝛽𝜇′

out − 𝛽2𝜇in𝜇
′
out

]
(3.6)

clearly, if 𝛽 is the cloud velocity in the Galactic frame, −𝛽 is the Galactic frame velocity
with respect to the cloud.

Since magnetic fields do not perform work on the particles, the particle undergoes only
elastic scattering within the cloud. This means its energy upon exiting the cloud remains
unchanged in the cloud’s frame of reference, represented as 𝐸′

𝑓 = 𝐸
′
𝑖 .

The relative change in energy is:

Δ𝐸
𝐸

=
𝐸′′ − 𝐸
𝐸

= 𝛾2 [
1 − 𝛽𝜇in + 𝛽𝜇′

out − 𝛽2𝜇in𝜇
′
out

] − 1 (3.7)

1In this context, we simplify for relativistic particles, thus 𝑝 ' 𝐸.
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This result shows that the energy gain is proportional to the initial energy, meaning
Δ𝐸/𝐸 is independent of 𝐸.

It is crucial to recognize that both energy gain and loss are possible in this mecha-
nism. This variability arises because the movements of both particles and magnetic
clouds (consequently, the angles of interaction 𝜇 and 𝜇′) are random. However, not all
configurations are equally probable.

Given that a particle undergoes multiple scatterings off magnetic irregularities within
the cloud, its exit direction becomes randomized, with an average 〈𝜇′

out〉 = 0. Initially,
we can average over the exit angle to get:〈

Δ𝐸
𝐸

〉
𝜇′
= 𝛾2 [1 − 𝛽𝜇in] − 1 (3.8)

Eventually, we must consider averaging over all possible initial angles. The rate at which
a particle collides with a cloud is proportional to their relative velocity, leading to:

𝑃(𝜇) ∝ 𝑣rel ∝ 1 − 𝛽𝜇in → 𝑃(𝜇) = 1
2 (1 − 𝛽𝜇in) (3.9)

Here we assumed 𝑣 ≈ 𝑐 and we normalized so that the total probability equals one:

𝐴
∫ +1

−1
𝑑𝜇(1 − 𝛽𝜇) = 1 → 𝐴 =

1
2 (3.10)

Notice that
∫
𝜇<0 𝑑𝜇𝑃(𝜇) = 1+ 𝛽/2 is larger than

∫
𝜇>0 𝑑𝜇𝑃(𝜇) = 1− 𝛽/2, which means that

head-on collisions are more frequent compared to tail-on collisions, which is the essence of
Fermis acceleration mechanism.

Consequently, the average change in energy is given by:〈
Δ𝐸
𝐸

〉
𝜇𝜇′

=
∫ +1

−1
𝑑𝜇𝑃(𝜇) [𝛾2 (1 − 𝛽𝜇) − 1

] ' 4
3𝛽

2 (3.11)

Therefore, we have demonstrated that, on average, the energy variation in Fermis mech-
anism is positive. This confirms that Fermi’s mechanism effectively accelerates charged
particles. However, the average energy change is proportional only to 𝛽2 underlining
the stochastic nature of the energy gain process.

Note that in this scheme the magnetic field’s primary role is to alter the direction of
particle motion, but the magnetic field itself does not provide the energy to increase
the particle energy. Instead, the energy is supplied by an induced electric field appro-
fondisci.

Considering 𝛽 = 𝑢/𝑐, with𝑢 ∼ 𝑣𝐴 ∼ 10 km/s, the fractional energy change per encounter
Δ𝐸
𝐸 turns out to be around 10−8, indicating a rather inefficient acceleration process.
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Indeed, for this mechanism to be a viable candidate for accelerating particles to the high
energies observed in cosmic rays, it must do so efficiently. Let’s define the acceleration
time, 𝜏acc, as:

𝜏acc =
(

1
𝐸
𝑑𝐸
𝑑𝑡

)−1
(3.12)

Assuming a typical distance 𝐿 between two clouds and no magnetic field in between
(making our estimate a lower limit), the average time between two encounters is 𝜏c = 𝐿/𝑐.
Neglecting the time particles spend inside the cloud:

𝑑𝐸
𝑑𝑡

' Δ𝐸
𝜏c

=
4
3
𝛽2𝑐𝐸
𝐿

→ 𝜏acc =
3
4
𝐿
𝑐
𝛽−2 (3.13)

With typical values of 𝛽 ∼ 10−4 and 𝐿 ∼ 1 pc, it becomes evident that this mechanism
would require nearly 𝜏acc ∼ Gyrs for a particle to double its energy. This timescale is
far too long to explain the very high energies observed in Galactic cosmic rays. In fact,
energy losses in the ISM, such as ionization losses or spallation, typically occur more
rapidly than the acceleration process postulated by Fermi, rendering the process even
less efficient.

Moreover, the energy spectrum resulting from Fermi’s original acceleration mechanism
would depend on the ratio of 𝜏acc to the energy-independent escape timescale 𝜏esc (see
Eq. 3.4). Spiega meglio.

This ratio is inherently unpredictable, as it varies based on the specific properties of
the magnetic clouds and the regions where these clouds are densely concentrated.
Consequently, different areas within the Galaxy could potentially accelerate cosmic rays
with varying power law distributions. When combined, these contributions are unlikely
to produce a singular, coherent power law spectrum akin to what is observed for Galactic
cosmic rays on Earth.

This inconsistency is another drawback of the Fermi mechanism. In contrast, accelera-
tion at shocks, which we will discuss next, circumvents both of these issues.

Finally, we notice that although we do not believe that the bulk of cosmic-ray acceleration
in our Galaxy is due to this mechanism, in several models of Galactic transport a similar
mechanism is responsible of a tiny re-energization of the already accelerated cosmic
rays.

O Second-order Fermi re-acceleration in the Fokker-Planck approach

To be done
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U First-Order Fermi Mechanism or Diffusive Shock Acceleration

The mechanism often associated with Fermi is, in fact, the result of the work by several
authors, as Krymsky, Bell, Blandford, and Ostriker in the late 1970s. They discovered
that astrophysical shocks could act as extremely efficient accelerators for cosmic particles,
a process now known as diffusive shock acceleration (DSA).

Current observations confirm that particles are indeed accelerated at these shocks,
evidenced by the radiation emitted from such regions, typically interpreted as the energy
losses of accelerated electrons mention the problem to identify hadronic signatures.

We know at this point that, in the vicinity of the discontinuity, the upstream region is
characterized by fast-moving, cold plasma, whereas the downstream region contains
slower, hotter plasma. The typical shock wave’s velocity in the ISM is approximately
∼ 103 − 104 km/s, which corresponds to a Mach number of about 100-1000, placing us
firmly in the strong shock regime.

The key concept here revolves around how particles perceive the plasma in the context
of a shock front. From a particle’s perspective, the plasma appears to approach at about
the shock velocity from both the upstream and downstream sides. Consider a group
of particles with energy 𝐸 initially located on the upstream side of the shock. These
particles undergo diffusion through collisions with magnetic turbulence present in the
plasma, which tends to isotropize their angular distribution in the frame where the
upstream plasma is at rest. Upon crossing the shock to the downstream side, these
particles encounter magnetic turbulence associated with the downstream plasma. This
plasma is moving towards the particles at a velocity ∼ 3

4𝑢𝑠 in the same reference frame.
If collisions with the downstream plasma further isotropize the particles, then from the
particles’ viewpoint, they effectively experience a collision with a cloud moving towards
them. Some of these particles will eventually diffuse back to the upstream side of
the shock. Upon their return, they perceive the upstream plasma as moving towards
them, on average. In the shock frame, the unshocked plasma advances towards the
downstream at a speed of |𝑢1−𝑢2 | ∼ 𝑢𝑠 , resulting again in a head-on cloud collision. The
continual diffusion of particles back and forth across the shock front invariably leads
to increases in particle energy. Therefore, numerous cycles of crossing the shock can
significantly accelerate the particles. As in both upstream and downstream scenarios,
the particles experience head-on collisions, this mechanism will result in a first-order
Fermi acceleration.

It is clear from this description that, for this process to occur effectively, particle directions
need to be isotropized, which can happen through pitch-angle scattering by MHD
waves. The generation of these waves is attributed to large-scale turbulence cascade
downstream, and upstream by the energetic particles themselves (cosmic-ray streaming).

Additionally, it’s crucial for particles to have a finite probability of escaping downstream
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to fulfill the conditions of the generalized Fermi acceleration mechanism.

More quantitatively, consider now a test particle in the upstream with energy 𝐸. This
particle diffuses and crosses the shock, and its energy in the downstream 𝐸𝑑 can be
calculated using Lorentz transformation:

𝐸𝑑 = 𝛾𝐸(1 + 𝛽𝜇) (3.14)

here, 0 ≤ 𝜇 ≤ 1 and 𝛽 = 𝑢1−𝑢2
𝑐 > 0.

The same principle applies to a particle transitioning from downstream to upstream,
with the angle 𝜇′ having the opposite sign:

𝐸𝑢 = 𝛾𝐸𝑑(1 − 𝛽𝜇′) (3.15)

here, −1 ≤ 𝜇′ ≤ 0.

As a consequence, after completing a cycle (upstream → downstream → upstream),
there is an overall gain in energy:

Δ𝐸
𝐸

=
𝐸𝑢 − 𝐸
𝐸

= 𝛾2(1 + 𝛽𝜇)(1 − 𝛽𝜇′) − 1 (3.16)

Notice that now, due to the different angular distributions, there are no configurations
leading to an energy decrease, and Δ𝐸/𝐸 is always positive.

To compute the mean energy gain over all the possible configurations, we have to
compute the probability of a particle encountering the shock front with a specific pitch
angle 𝜇.

Assuming 𝑛 is the number density of isotropically distributed particles due to diffusion,
this probability can be derived from the ratio of the flux of particles moving in the
direction of 𝜇 to the total flux 𝐽:

𝐽 =
∫

𝑑Ω
𝑛

4𝜋𝑣𝜇 =
𝑛𝑣
4𝜋

∫ 2𝜋

0
𝑑𝜙

∫ 1

0
𝑑𝜇𝜇 =

𝑛𝑣
4 (3.17)

where we use the information that only those particles with a projected cos𝜃 < 0 will
actually cross the shock front.

Therefore, the probability density is given by:

𝑃(𝜇) ∝ 𝑛𝜇𝑣
𝐽

= 4𝜇 (3.18)

To normalize 𝑃 as a probability, we impose the condition:∫ 1

0
𝑑𝜇𝑃(𝜇) = 1 → 𝑃(𝜇) = 2𝜇 (3.19)

It is evident that this probability is symmetric in both directions. Consequently, the
average energy gain can be calculated as follows:
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〈
𝐸𝑢 − 𝐸
𝐸

〉
𝜇,𝜇′

= −
∫ 1

0
𝑑𝜇

∫ 0

−1
𝑑𝜇′𝑃(𝜇)𝑃(𝜇′) [𝛾2(1 + 𝛽𝜇)(1 − 𝛽𝜇′) − 1

]
=

4
3𝛽 =

4
3
𝑢1 − 𝑢2
𝑐

(3.20)

This result implies that the energy gain per cycle is first order in 𝛽 as expected, for
interstellar shock the resulting energy gain is of the order of 10−2 − 10−3, which is
enormously more than the second order mechanism!

In assessing the efficiency of the proposed mechanism, we must additionally ensure
that particles can effectively cross the shock in both directions. In the upstream region,
particles, regardless of the diffusion coefficient, will eventually encounter the shock
front, which moves towards them at thousands of kilometers per second. Hence, the
probability of crossing from upstream to downstream, 𝑃1→2, is 1. Particles leave the
upstream region only when their Larmor radius becomes larger than the accelerator’s
size or the maximum scale of the upstream turbulence.

In the downstream region, besides diffusion, we must consider that the plasma moves
away from the shock, dragging particles with it. This leads to a finite probability of
particles not returning to the shock front, resulting in a leakage. To estimate this escape
probability, we recall that the particle flux through an infinite planar shock is 𝑛𝑣/4,
assuming efficient isotropization in the upstream. In the shock rest frame, there is a
particle flow𝑢2𝑛 downstream, away from the shock front, which is lost to the acceleration
process. Therefore, the escape probability is:

𝑃2→∞ =
4𝑢2
𝑐

(3.21)

The probability of return to the shock front is simply:

𝑃2→1 = 1 − 𝑃2→∞ = 1 − 4𝑢2
𝑐

(3.22)

With 𝑢2/𝑐 ∼ 10−2, most particles from the downstream will return to the upstream.
This results in a highly efficient first-order Fermi acceleration mechanism with a high
probability of completing a cycle.

The existence of a small escape probability is crucial, as it leads to a distribution of
energies rather than uniform acceleration. Applying previous results, the slope of the
differential spectrum2 produced by shock acceleration is:

𝛾 ' 3𝑢2
𝑢1 − 𝑢2

+ 1 =
𝑟 + 2
𝑟 − 1 → 2 (3.23)

2The differential spectrum 𝑛(𝐸)𝑑𝐸 is the number of particles with energy between 𝐸 and 𝐸 + 𝑑𝐸 thus
𝐸𝑛(𝐸) ∝ 𝐸−𝛾
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HE-AP Th Cosmic ray spectrum from diffusive shock acceleration

We found that this mechanism results in a universal power-law spectrum for strong
shocks, as the slope depends only on the compression factor. Worth noticing, the
accelerated spectrum is independent of the diffusion coefficient, which in turn depends
on the poor-understood microphysics of particle-wave scattering.

On the other hand, the acceleration process’s efficiency and the potential to accelerate
particles to sufficiently high energies dramatically depend on the diffusion coefficient.
To estimate the acceleration time, we need to consider the energy gain per crossing
and the time taken for each crossing. The average distance traveled by a particle in
each region is obtained by equating the diffusion length (𝑙d,i '

√
2𝐷𝑖𝑡𝑖) to the distance

covered by the shock or the advected plasma.

The total cycle time is the sum of the times spent in the downstream and upstream3:

𝑡cycle =
2𝜆1
𝑐

+ 2𝜆2
𝑐

=
4
𝑐

(
𝐷1
𝑢1

+ 𝐷2
𝑢2

)
(3.24)

The characteristic acceleration timescale is then:

𝜏acc =
3

𝑢1 − 𝑢2

(
𝐷1
𝑢1

+ 𝐷2
𝑢2

)
(3.25)

To compare this time with the age of the system, we use typical values for the upstream
diffusion coefficient and the shock speed of a young SNR. For example, with 𝐷1 '
1028 cm2 s−1(𝐸/GeV)1/2 and 𝑢1 = 104 km/s, we find:

𝜏acc ' 1 kyr (𝐸/GeV)1/2 (3.26)

However, observations of particles accelerated up to 100 TeV in events like Tycho’s
supernova (age ∼ 500 years) suggest that our estimates are off by orders of magnitude.
Reconciling this discrepancy requires reducing the diffusion coefficient, possibly through
cosmic-ray induced plasma instabilities. This leads to an inherently non-linear problem,
underscoring the complexity of particle acceleration in astrophysical shocks.

U Cosmic ray spectrum from diffusive shock acceleration

Let’s explore the shock acceleration mechanism further through the formalism of a
transport equation. We define our particle distribution function in the reference frame
of the shock as:

𝑓 = 𝑓 (𝑧, 𝑡 , 𝑝) (3.27)

This function is defined such that the number density of particles is given by:

𝑛(𝑧, 𝑡 , 𝑝)𝑑𝑝 = 𝑓 (𝑧, 𝑡 , 𝑝)𝑑3p = 𝑓 (𝑧, 𝑡 , 𝑝)4𝜋𝑝2𝑑𝑝 (3.28)

3𝑡c,i =
𝜆𝑖

〈𝑣𝑥,𝑖〉 = 𝜆𝑖

− ∫ 𝜋/2
0 𝑣𝑖 cos𝜃𝑑 cos𝜃

= 𝜆𝑖
𝑣𝑖/2 ∼ 2𝜆𝑖

𝑐
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The transport equation governing the distribution 𝑓 is:

𝜕 𝑓
𝜕𝑡

+ 𝑢 𝜕 𝑓
𝜕𝑧

− 1
3

(
𝑑𝑢
𝑑𝑧

)
𝑝
𝜕 𝑓
𝜕𝑝

=
𝜕

𝜕𝑧

[
𝐷𝑧𝑧

𝜕 𝑓
𝜕𝑧

]
+𝑄 (3.29)

We pass now to characterise the injection term𝑄(𝑝). Without injection terms or a nonzero
initial condition, the only solution to this transport equation is 𝑓 (𝑧, 𝑝, 𝑡) = 0 everywhere.

It’s important to remind that the shock is collisionless and possesses a small but finite
thickness, comparable to the Larmor radius of the thermal particles forming the shock.
For typical shock velocities of a few thousand kilometers per second, the Larmor radius
is around 𝑟L ∼ 108 cm, which, although small, is significant in astrophysical systems. The
gas in the downstream of the shock is thermalized, meaning its momentum distribution
is Maxwellian. High-energy particles near the shock surface, which are part of this
distribution, may have a Larmor radius large enough to cross the shock. Once they
do, they enter the Fermi acceleration process, start gaining energy, and deviate from
the Maxwellian distribution. This process constitutes the particle injection mechanism.
The likelihood of crossing the shock decreases with distance from the shock, as a larger
Larmor radius would be necessary. This justifies the assumption that particles are
injected at the shock.

Consequently, we can represent the injection term as a delta-function in position:

𝑄(𝑧, 𝑡 , 𝑝) ∝ 𝛿(𝑧)𝛿(𝑝 − 𝑝inj) (3.30)

where 𝑝inj denotes the minimum momentum required for this process to occur.

By introducing 𝑄0 to normalize the fraction of the particle flux crossing the shock per
unit volume in phase space:

𝜂𝑛inj𝑢1 =
∫

𝑑𝑧 4𝜋𝑝2𝑑𝑝 𝑄0𝛿(𝑧)𝛿(𝑝 − 𝑝inj) → 𝑄0 = 𝜂
𝑛inj𝑢1

4𝜋𝑝2
inj

(3.31)

hence, the transport equation becomes:

𝜕 𝑓
𝜕𝑡

+ 𝑢 𝜕 𝑓
𝜕𝑧

− 1
3

(
𝑑𝑢
𝑑𝑧

)
𝑝
𝜕 𝑓
𝜕𝑝

=
𝜕

𝜕𝑧

[
𝐷𝑧𝑧

𝜕 𝑓
𝜕𝑧

]
+ 𝛿(𝑧)𝛿(𝑝 − 𝑝inj)𝑄0 (3.32)

Assuming stationarity ( 𝜕 𝑓𝜕𝑡 = 0) and focusing on the upstream region where 𝑑𝑢
𝑑𝑧 = 0, the

equation becomes:

𝑢
𝜕 𝑓
𝜕𝑧

− 𝜕

𝜕𝑧

[
𝐷
𝜕 𝑓
𝜕𝑧

]
= 0 → 𝜕

𝜕𝑧

[
𝑢 𝑓 − 𝐷 𝜕 𝑓

𝜕𝑧

]
= 0 (3.33)

This implies that the sum of the advective and diffusive fluxes, 𝑢 𝑓 − 𝐷 𝜕 𝑓
𝜕𝑧 , must be

constant. Since it’s unphysical to have accelerated particles at infinity in the upstream
direction, the flux at 𝑧 = +∞ is zero, and thus this constant value must also be zero:

𝑢 𝑓 − 𝐷 𝜕 𝑓
𝜕𝑧

= 0 (3.34)

55



HE-AP Th Cosmic ray spectrum from diffusive shock acceleration

As an ansatz, we propose the following form for 𝑓 :

𝑓 = 𝑓0 exp (𝛼𝑧) (3.35)

Substituting this into the equation, we obtain 𝛼 = 𝑢1
𝐷 , leading to the upstream distribu-

tion function:
𝑓u(𝑧, 𝑝) = 𝑓0 exp

[
𝑢1𝑧
𝐷(𝑝)

]
(3.36)

Here, 𝑓0 is the distribution function at the shock, serving as the boundary condition to
solve the equation. The ratio 𝐷(𝑝)

𝑢1
is known as the typical diffusion length of the plasma.

This represents a balance point where the diffusion of particles away from the shock is
counterbalanced by the plasma pushing them back towards the shock.

In the downstream region, the only plausible stationary solution is to assume that the
particle distribution function 𝑓d = 𝑓0 remains constant in space. This constancy is neces-
sary because the particle density cannot diverge at downstream infinity (as this would
be unphysical), and it cannot decrease either. If it did, diffusion and advection would
concurrently remove particles from the downstream region, violating the stationary
assumption.

It’s important to note that 𝑓 is continuous across the shock. Unlike dynamic thermody-
namic quantities, 𝑓 is not a property of the plasma itself. The particles we’re considering
for acceleration have Larmor radii larger than the shock’s thickness, meaning they do
not feel the discontinuity.

To determine 𝑓0, we integrate the transport equation across the shock:

lim
𝜖→0

∫ +𝜖

−𝜖
→ 0 − 1

3 (𝑢2 − 𝑢1)𝑝 𝜕 𝑓0
𝜕𝑝

= 𝐷
𝜕 𝑓
𝜕𝑧

����
2
− 𝐷 𝜕 𝑓

𝜕𝑧

����
1
+𝑄0𝛿(𝑝 − 𝑝inj) (3.37)

Here, the integral of 𝜕 𝑓
𝜕𝑧 is zero since 𝑓 is continuous across the shock. This leads to:

𝑢1 𝑓0 − 1
3 (𝑢2 − 𝑢1)𝑝 𝜕 𝑓0

𝜕𝑝
= 𝑄0𝛿(𝑝 − 𝑝inj) (3.38)

For particles with 𝑝 > 𝑝inj, we get:

𝑢1 𝑓0 =
1
3 (𝑢2 − 𝑢1)𝑝 𝜕 𝑓0

𝜕𝑝
(3.39)
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Rewriting this, we find:

𝑑𝑓0
𝑓0

= − 3𝑢1
𝑢1 − 𝑢2

𝑑𝑝
𝑝

log 𝑓0 = − 3𝑢1
𝑢1 − 𝑢2

log 𝑝

𝑓0(𝑝) = 𝑝−
3𝑢1
𝑢1−𝑢2 = 𝑝−

3𝑢1
𝑢1−𝑢2

𝑓0(𝑝) = 3𝑢1
𝑢1 − 𝑢2

𝑁𝑖𝑛 𝑗𝜂

4𝜋𝑝2
𝑖𝑛 𝑗

(
𝑝
𝑝𝑖𝑛 𝑗

)− 3𝑟
𝑟−1

𝑓 (𝑝) ∝ 𝑝−
3𝑟
𝑟−1

(3.40)

𝑓0(𝑝) = 3𝑢1
𝑢1 − 𝑢2

𝑁inj𝜂

4𝜋𝑝2
inj

(
𝑝
𝑝inj

)− 3𝑟
𝑟−1

(3.41)

𝑓 (𝑝) ∝ 𝑝−
3𝑟
𝑟−1 (3.42)

This result confirms that:

𝑛(𝐸) ∼ 𝑝2 𝑓 (𝑝) ∼ 𝑝2𝑝−
3𝑟
𝑟−1 ∼ 𝐸− 𝑟+2

𝑟−1 → 𝐸−2 (3.43)

This relation holds for relativistic particles (𝐸 = 𝑝) and strong shocks (𝑟 = 4). For
non-relativistic particles (𝐸 = 𝑝2

2𝑚 ), the energy spectrum becomes4 𝑛(𝐸) ∼ 𝐸−3/2.

Thus, the spectrum of particles accelerated in diffusive shock acceleration is a power
law in terms of momentum and a broken power law in terms of energy, with the break
occurring at approximately the particle mass.

O X-ray filaments

X-ray synchrotron from SNR shocks first established for SN1006.

Is related to loss-limited X-ray synchrotron emission.

We equate the acceleration time with the synchrotron loss-time

𝜏acc =
𝐷

𝑢2
𝑠
∼ 𝜏syn

as 𝜏syn ∝ 𝐸−1𝐵−2

follows that the max energy for which the two are the same

𝐸 ∼ 𝑢2
𝑠

𝐵2𝐷
4The number of particles with energy 𝐸 is given by 𝑛(𝐸)𝑑𝐸 = 4𝜋𝑝2 𝑓0(𝑝)

(
𝑑𝑝
𝑑𝐸

)
𝑑𝐸.
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HE-AP Th The need of a non-linear theory of diffusive shock acceleration

Figure 3.1: Composite image of the SN 1006 supernova remnant. X-ray data from NASAs Chandra X-ray Observatory
are in blue.

U The need of a non-linear theory of diffusive shock acceleration

To be done
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t Particle Transport in Galactic environments

U Cosmic-ray protons in the Galaxy

The local density of CRs, their energy spectrum, and their relative abundances provide
us with the only direct information we can obtain about CRs. These measurements,
along with estimates of the CR column density deduced from diffuse 𝛾-rays [?, ?], form
the foundation for any model aiming to describe CR transport. In this section, our goal
is to construct a basic model for CR propagation in the Galaxy that enables us to extract
from these observables valuable information on the injection of CRs and the subsequent
processes they undergo in the ISM.

As discussed in § ??, the escape time of CRs is too long to be compatible with straight
propagation along the large-scale magnetic field. Consequently, CRs must be confined
to the Galaxy for a significant period of time, primarily spending most of their time in
low-density gas regions, such as the Galactic halo. The existence of such an extended
(larger than the gas disc) magnetized region is supported by observations of synchrotron
emission from edge-on external galaxies [?].

To account for these crucial aspects, virtually all CR transport models rely on the same
basic ideas: high-energy particles are accelerated in sources located in a thin disc region
of thickness ℎ ∼ 100 pc, following an injected spectrum proportional to 𝐸−𝛾, with 𝛾 ≳ 2
as expected in the presence of diffusive shock acceleration mechanism.

After the injection, CRs propagate diffusively throughout the Galactic halo, which has
a scale height 𝐻 of approximately several kiloparsecs with a diffusion coefficient 𝐷
proportional to 𝐸𝛿, where 𝛿 ∼ 1/3 − 1/2, and they escape freely at the boundaries. The
escape is an essential, yet poorly understood, process to guarantee the stationarity of
the problem, and is usually simplified by setting the CR density to zero at the boundary
𝐻 above and below the Galactic plane [?] (see figure 4.1).

Since the size of the halo is much smaller than the Galaxy’s radius (𝑅d ≳ 10 kpc), a
one-dimensional model is sufficient to describe the escape of CRs along the z-direction.

The simplest representation of this framework is achieved by employing the diffusion
equation in the form of Fick’s law [?]. It is important to note that one could also utilize the
more general Fokker-Planck equation (see P. Blasi’s lecture notes in this volume). Both
Fick’s law and the Fokker-Planck equation are considered as purely phenomenological
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2H
Rg

2h

Figure 4.1: Illustrative depiction of the Milky Way’s diffusive halo from the perspective of a cosmic ray physicist.
Primary sources are distributed only in the disk. Also secondary nuclei emerge from cosmic ray interactions within
the gaseous disk.

equations, as they represent different choices for the flux in the fundamental continuity
equation.

In general, we can write the continuity equation with a source term 𝑄(𝐸, 𝑧) as

𝜕𝑛
𝜕𝑡

+ 𝜕𝐽
𝜕𝑧

= 𝑄 (4.1)

where 𝑛(𝐸, 𝑧, 𝑡) is the CR number density per unit energy and 𝐽 the corresponding flux
along 𝑧.

According to Fick’s law of diffusion, the diffusive flux is determined by the concentration
gradient as 𝐽 = −𝐷∇𝑛. In other words, a spatial gradient in the particle density will
give rise to a current that transports particles from regions of high density to regions
of low density, with the magnitude of the current being proportional to the diffusion
coefficient 𝐷. The dimensions of 𝐷 are then area per unit time.

The diffusion equation becomes

𝜕𝑛
𝜕𝑡

=
𝜕

𝜕𝑧

(
𝐷
𝜕𝑛
𝜕𝑧

)
+𝑄 (4.2)

For a spatially constant diffusion coefficient we can derive the associated Greens function
as

G(𝑧, 𝑡) =
(

1
4𝜋𝐷𝑡

)1/2
e−

𝑧2
4𝐷𝑡 (4.3)

which we interpret as the probability for finding a particle that is injected at the disc
(𝑧 = 0) at a position 𝑧 after the time 𝑡.

The mean distance from the Galactic plane can be calculated from equation (4.3):

〈𝑧〉 =
(

1
4𝜋𝐷𝑡

)1/2 ∫
𝑑𝑧𝑧e−

𝑧2
4𝐷𝑡 ' √

𝐷𝑡 (4.4)
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The characteristic time to reach a height 〈𝑧〉 = 𝐻 can then be defined as 𝑡H ' 𝐻2/𝐷, and
the characteristic averaged velocity with which CRs escape from the Galaxy as

𝑣D ∼ 𝐻
𝑡H

∼ 𝐷
𝐻

(4.5)

It is important to acknowledge that in order to obtain the average distance from the
galactic plane, we made the assumption that the diffusion coefficient remains spatially
constant throughout both the halo and the disc. However, due to the variations in gas
densities and magnetic field strengths between these regions, this assumption may not
hold true.

By adopting the phenomenological assumption of diffusion as the primary transport
process, we can construct the CR evolution equation by specifying the source term
assuming Galactic Supernovae (SNe) as major contributors.

Since the galactic disc is extremely thin with respect to the halo, we can describe the
spatial part of the injection term as a delta-function 𝛿(𝑧), and therefore

𝑄(𝐸, 𝑧) = 𝜉CR𝐸SNℛSN𝑁(𝐸)
𝜋𝑅2

d
𝛿(𝑧) (4.6)

where 𝐸SN ' 1051 erg is the SN kinetic energy, 𝜉CR is the fraction of this energy converted
in CR acceleration, ℛSN ' 1/50 yr−1 is the rate of SNe in the Galaxy and 𝑁(𝐸) the
spectrum of one SN.

Considering that our Galaxy has an age of several billion years and observations of light
elements suggest that CRs spend at most a hundred million years within our Galaxy, it
can be concluded that the dynamical timescale of the Galaxy is significantly longer than
the phenomena we are investigating. Therefore, we are justified in assuming stationarity,
and the diffusion equation for protons 𝑛𝑝 becomes:

− 𝜕

𝜕𝑧

[
𝐷(𝐸)𝜕𝑛𝑝

𝜕𝑧

]
=

𝜉𝑝𝐸SNℛSN

𝜋𝑅2
d

𝑁(𝐸)𝛿(𝑧) (4.7)

For 𝑧 ≠ 0, and imposing the boundary conditions 𝑛𝑝(𝑧 = ±𝐻, 𝐸) = 0, it gives the
solution1:

𝐷
𝜕𝑛𝑝
𝜕𝑧

= Constant −→ 𝑛𝑝(𝑧) = 𝑛0(𝐸)
(
1 − |𝑧 |

𝐻

)
(4.8)

Thereby the diffusive flux is found to be constant in 𝑧, and we can compute it at the disc
𝑧 = 0 as:

𝐷
𝜕𝑛𝑝
𝜕𝑧

����
𝑧=0+

= −𝐷𝑛0
𝐻

(4.9)

1The general solution to the differential equation can be written as 𝑛𝑝(𝑧) = 𝐴 + 𝐵𝑧:
• For 𝑧 > 0, we impose 𝑛𝑝(𝐻) = 0 which gives 𝑛𝑝(𝑧) = 𝐴

(
1 − 𝑧

𝐻

)
• For 𝑧 < 0, we impose 𝑛p(−𝐻) = 0 which gives 𝑛p(𝑧) = 𝐴

(
1 + 𝑧

𝐻

)
Combining the two regions and imposing 𝑛𝑝(0) = 𝑛0(𝐸), we obtain the solution valid in both regions as in
equation (4.8).
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Figure 4.2: Comparison between the injection spectrum and the propagated spectrum within an energy-dependent
diffusion toy-model. Higher-energy particles escape more swiftly, leading to a reduced equilibrium intensity.
Consequently, the propagated spectrum consistently exhibits a steeper profile than the injected counterpart.

To find the density 𝑛0 we integrate the diffusion equation around 𝑧 = 0:

lim
𝜖→0

∫ 𝜖+

𝜖−
𝑑𝑧

{
− 𝜕

𝜕𝑧

[
𝐷
𝜕𝑛𝑝
𝜕𝑧

]
= 𝑄(𝐸, 𝑧)

}
(4.10)

which leads to
−2𝐷

𝜕𝑛𝑝
𝜕𝑧

����
𝑧=0+

=
𝜉𝑝𝐸SNℛSN

𝜋𝑅2
d

𝑁(𝐸) (4.11)

and using the equation for the flux derived in equation (4.9):

𝑛𝑝(𝐸) =
𝜉𝑝𝐸SNℛSN𝑁(𝐸)

2𝜋𝑅2
d

𝐻
𝐷(𝐸) (4.12)

As a result, we have obtained the CR spectrum as measured by an observer placed
within the galactic disc. It can be simply re-written as:

𝑛𝑝(𝐸) = 𝑄SN(𝐸)𝜏esc(𝐸)
𝑉G

(4.13)

where 𝑄SN(𝐸) = 𝜉𝑝𝐸SNℛSN𝑁(𝐸) is the number of particles injected per unit time by all
supernovae, 𝜏esc = 𝐻2/𝐷 is the escape time, and 𝑉G = 2𝜋𝑅2

d𝐻 is the total volume of the
Galaxy.

In summary, since the diffusion coefficient increases with energy, following a power-law
dependence as 𝐷 ∝ 𝐸𝛿, the escape time scales 𝜏esc ∝ 𝐸−𝛿, and the spectrum we observe
is always steeper than the spectrum produced at the CR sources.

In point of fact, assuming that the sources inject in the ISM a power-law spectrum 𝐸−𝛾,
what we measure is a spectrum proportional to 𝐸−𝛾−𝛿 since high-energy particles spend
less time in the Galaxy compared to lower-energy particles, resulting in a significant
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suppression of their density relative to the low-energy part of the spectrum. This is
depicted in figure 4.2.

It is important to note that since what we observe is a combination of the injection and
transport processes, any deviation from a pure power-law in the observed spectrum of
protons (or any primary species) cannot be easily disambiguate if due to propagation
or acceleration effects.

Finally, it is interesting to make some remarks on the assumptions we have made so far.
The physics of CR transport is influenced not only by diffusion but also by boundary
conditions2. As discussed earlier, the condition of free escape, where 𝑛(𝑧 = ±𝐻, 𝐸) = 0,
implies that the diffusion current does not depend on position.

At the boundary, conservation of flux requires:

𝐷
𝜕𝑛
𝜕𝑧

����
𝑧=𝐻

=
𝑐
2𝑛out (4.14)

where it is assumed that particles outside the diffusing volume are streaming away
approximately at the speed of light3, 𝑐.

On the other hand, we can express 𝐷 in terms of the mean free path 𝜆 as 𝐷 = 1
3 𝑐𝜆4,

yielding:

𝑛out =
2𝐷
𝑐𝐻

𝑛0 ∼ 𝜆(𝐸)
𝐻

𝑛0 (4.15)

The condition of free-escape 𝑛out � 𝑛0 is then satisfied as long as the path lenght 𝜆 is
much smaller than 𝐻, which remains true for 𝐸 � PeV [?].

Despite the great importance of this assumption we do not have any knowledge on
what determines the halo size or whether the halo size depends on energy or space (see
however [?, ?] for an attempt to model the halo based on physical principles).

In the formulation of the transport equation for protons, we have initially disregarded the
nuclear energy losses. For protons, the primary energy loss mechanism is the inelastic
scattering with proton target leading to pion production. This process is characterized
by a typical cross section of approximately 𝜎pp ∼ 3 × 10−26 cm2.

Nevertheless, when considering the timescale of this process in the ISM with a typical
density of 𝑛d ∼ 1 cm−3, we find:

𝜏pp ' 1
�̄�𝜎pp𝑐

' Gyr (4.16)

Here, �̄� = 𝑛dℎ/𝐻 represents the average density within the diffusive volume.

2Further exploration of this subject is provided in the lecture notes by P. Blasi within the same volume.
3The flux outgoing a semi-finite plane is Φ =

∫ 1
0 𝑑𝜇𝜇𝑣𝑛 ' 𝑛𝑐

∫ 1
0 𝑑𝜇𝜇, where 𝜇 is the cosine of the

incident angle.
4A plain derivation of this expression is provided in Sec. 3.2 of [?]
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From this calculation, we observe that the timescale for 𝑝𝑝 scattering is significantly
long, on the order of a Gigayear. Consequently, we can confidently assume that this
process does not significantly alter the spectrum of propagated protons.

However, despite being subdominant in terms of energy losses, the proton-proton in-
teraction resulting in neutral pions that decay into two 𝛾-rays is the leading mechanism
for production of the spectacular diffuse emission observed along the Galactic Plane in
Fermi-LAT data above ∼ 100 MeV (see P.D. Serpico’s lecture notes in this volume).

On the other hand, the interaction cross-section becomes increasingly relevant when
dealing with heavy nuclei. Therefore, in §4.2, we will discuss the incorporation of these
effects in the transport of nuclei through the ISM.

U Primary nuclei

Energy losses resulting from the fragmentation of nuclei in the ISM play a critical role
in the propagation of CR nuclei across the Galaxy. It is worth noting that other loss
mechanisms, such as ionization and Coulomb interactions, are only relevant for energies
𝑇 ≲ 10 GeV/n, and therefore, we will neglect them in the remainder of these lecture
notes (see P.D. Serpico’s lecture notes in this volume).

When accounting for these losses, the transport equation for the phase-space distribution
function5 of a species 𝛼 takes the following form:

− 𝜕

𝜕𝑧

[
𝐷𝛼(𝑝)𝜕 𝑓𝛼

𝜕𝑧

]
= 𝑄𝛼(𝑝)𝛿(𝑧) − 𝑓𝛼

𝜏f,𝛼
+

∑
𝛼′>𝛼

𝑓𝛼′

𝜏f,𝛼𝛼′
(4.17)

In this equation, the source term 𝑄𝛼(𝑝) is now accompanied by a sink term, which
accounts for the spallation of CR nuclei. The rate of spallation is proportional to the
spallation cross section 𝜎𝛼 and the density of the interstellar gas in the disc 𝑛d. Ad-
ditionally, the last term on the right-hand side represents the source term due to the
spallation of heavier nuclei of type 𝛼′ into nuclei of type 𝛼. In that regard, the quantities
𝜏f,𝛼𝛼′ contain the branching ratio of spallation of 𝛼′ into 𝛼.

As the target gas for nuclear fragmentation is confined to the thin disk, we can explicitly
define the timescale for inelastic losses as

1
𝜏f,𝛼

= 2ℎ𝑛d𝛿(𝑧)𝑐𝜎𝛼 (4.18)

Additionally, we assume that spallation cross-sections are energy-independent. Inter-
estingly, measurements of spallation cross-sections above a few GeV/n do not show any
appreciable dependence on the projectile energy [?].

5See appendix ?? for the formal definition of this quantity.
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On the other hand, the cross sections of various elements increase with the atomic mass
number, roughly following a geometric scaling law [2]:

𝜎𝛼 ' 45 mb𝐴2/3 (4.19)

The source term is defined by assuming that particles are injected relativistically, 𝑝 ≳
𝑝min = 𝐴𝑚𝑝𝑐, with a power-law momentum distribution 𝑝−𝛾:

𝑄𝛼(𝑝, 𝑧) = 𝑄0,𝛼

(
𝑝
𝑝min

)−𝛾
𝛿(𝑧) (4.20)

To determine the normalization factor, 𝑄0,𝛼, we impose that the total luminosity in CRs
equals that released by Galactic SNe:

𝜉CR𝐸SNℛSN =
∫
𝑑𝑉

∫
𝑑3𝑝 𝐸(𝑝)𝑄(𝑧, 𝑝) (4.21)

This results in
𝑄0,𝛼 =

(𝛾 − 4)𝑐3𝜉CR𝐸SNℛSN

4𝜋2𝑅2
d𝐸

4
min

(4.22)

where 𝐸min = 𝑝min𝑐.

The transport equation for a pure primary species, i.e., without a significant secondary
contribution, can be written as

− 𝜕

𝜕𝑧

[
𝐷𝛼(𝑝)𝜕 𝑓𝛼

𝜕𝑧

]
= 𝑄0,𝛼(𝑝)𝛿(𝑧) − 2ℎ𝑛d𝛿(𝑧)𝑐𝜎𝛼 𝑓𝛼(𝑝) (4.23)

We notice that this equation can be solved in the same way and with the same boundary
conditions at 𝑧 = ±𝐻 as equation (4.7). For 𝑧 ≠ 0, it gives:

𝑓𝛼(𝑧, 𝑝) = 𝑓0,𝛼(𝑝)
(
1 − |𝑧 |

𝐻

)
(4.24)

The expression of 𝑓0,𝛼(𝑝) can be obtained by integration of equation (4.23) around the
disc

−2𝐷𝛼
𝜕 𝑓𝛼
𝜕𝑧

����
0+

= 𝑄0,𝛼(𝑝) − 2ℎ𝑛d𝑐𝜎𝛼 𝑓0,𝛼(𝑝) (4.25)

Finally, we find:

𝑓0,𝛼(𝑝) = 𝑄0,𝛼𝐻
2𝐷𝛼

1
1 + 𝑛d

ℎ
𝐻 𝑐𝜎𝛼

𝐻2
𝐷𝛼

(4.26)

Notice that �̄� = 𝑛dℎ/𝐻 represents the average density experienced by CRs during their
Galactic propagation, while𝐻2/𝐷𝛼 denotes their diffusion time, and 1/(�̄�𝑐𝜎𝛼) represents
the effective spallation time.
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Figure 4.3: The grammage corresponding to the best fit model described in [?] as a function of rigidity is shown as a
solid blue line. The dashed lines refers to carbon (green), oxygen (orange), and iron (red) inelastic critical grammage.

To express this in terms of the matter thickness traversed by CRs during their propaga-
tion, we introduce the concept of grammage, denoted as

𝜒(𝑝) = 𝑚p

(
𝑛d

ℎ
𝐻

)
𝑐
(
𝐻2

𝐷𝛼

)
∼ 𝑚𝑝 �̄�𝑐𝜏esc(𝑝) (4.27)

Written in this form, the grammage serves to quantify the average density, �̄�, that
particles traverse while moving across the Galaxy for a duration corresponding to the
time it takes for particles to leave the Galaxy, 𝜏esc.

Furthermore, we define the critical grammage as

𝜒cr =
𝑚p

𝜎𝛼
' 40𝐴−2/3 gr cm−2 (4.28)

The critical grammage represents the threshold value where spallation becomes signif-
icant, requiring the grammage to be at least 𝜒cr.

By using these definitions, the propagated spectrum of a species 𝛼 can be expressed as:

𝑓0,𝛼(𝑝) = 𝑄0,𝛼(𝑝)
2𝑛dℎ𝑚p𝑐

1
1

𝜒(𝑝) + 1
𝜒cr

(4.29)

In the limit of strong and weak spallation, we obtain:

𝑓0,𝛼(𝑝) = 𝑄0,𝛼(𝑝) ×


1
2𝑛dℎ𝑚p𝑐

𝜒cr if 𝜒(𝑝) � 𝜒cr

𝐻
2𝐷(𝑝) if 𝜒(𝑝) � 𝜒cr

(4.30)

Hence, when 𝜒(𝑝) � 𝜒cr, spallation dominates, the spectrum at the disc will exhibit
a similar slope to the injection spectrum. Conversely, in the limit of weak spallation,
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the diffusion-dominated solution is recovered, resulting in an observed spectrum that
is steeper than the source spectrum due to the momentum dependence of the diffusion
coefficient.

At low energies, spallation may dominate because 𝐷(𝑝) is an increasing function of
momentum, and spallation cross sections are independent of energy. For heavy nuclei,
the effects become particularly relevant at higher energies due to the scaling with mass
in equation (4.18). In figure 4.3 the critical grammage for different nuclei is compared
with the Galactic value obtained by several recent analysis [?, ?]. For Iron, one of the
heaviest species present in the Galactic radiation, the critical grammage becomes ruling
for rigidities6 below ≲ 60 GV [?].

Equation (4.29) highlights that if we could somehow measure the grammage, we
would be able to retrieve the acceleration efficiency 𝜉CR from the spectrum observed at
Earth. This parameter is of crucial importance for the development of any acceleration
paradigm.

However, obtaining this crucial information relies on a different observable, which will
be discussed in detail in the next section.

U The secondary over primary ratio

As mentioned in the Introduction, light and fragile elements such as lithium, beryllium,
and boron are mainly synthesized through the collisions of galactic CRs with the inter-
stellar gas in the Galaxy. Here we investigate the production of these elements, and how
they constrain CR models for Galactic propagation. For the sake of simplicity, we focus
on a case with only carbon as the primary species (𝛼′ = C), whereas boron is almost
exclusively created in secondary processes (𝛼 = B).

The solution for carbon has been obtained in the previous section and is given by:

𝑓0,C(𝑝) = 𝑄0,C
2𝑛dℎ𝑚p𝑐

1
1

𝜒C(𝑝) + 1
𝜒cr,C

(4.31)

Since boron is a pure secondary species, the solution of its transport equation takes
the same form as the previous equation, with the injection rate proportional to the
equilibrium solution for carbon:

4𝜋𝑄B(𝑝)𝑝2𝑑𝑝 = 2ℎ𝑛d𝑐𝜎C→B4𝜋𝛿(𝑧) 𝑓C(𝑝′)𝑝′2𝑑𝑝′ (4.32)

Here, 𝐴 is the atomic number of carbon, and the Jacobian 𝑑𝑝′
𝑑𝑝 = 𝐴

𝐴−1 is introduced to
ensure conservation of energy per nucleon.

6We remind that rigidity is defined as momentum over charge, 𝑝/𝑍.
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The spectrum of boron in the disc is then given by:

𝑓0,B(𝑝) = 𝜎C→B
𝑚p

1
1

𝜒B(𝑝) + 1
𝜒cr,B

𝑓0,C

(
𝐴

𝐴 − 1𝑝
) (

𝐴
𝐴 − 1

)3
(4.33)

This leads to the B/C ratio as:

B
C ' 1

𝜒cr,C→B

(
1

𝜒(𝑝) +
1

𝜒cr,B

)−1
(4.34)

It is important to note that the boron-to-carbon ratio is independent of the primary
source and is solely a function of the grammage and relevant cross-sections.

Once again, considering the two limits of strong and weak spallation, we find the
following. In the case of strong spallation:

B
C

𝜒�𝜒cr−→ 𝜒cr,B
𝜒cr,C→B

=
𝜎C→B
𝜎B

' 0.3 (4.35)

This results in a constant B/C ratio as a function of energy, with the value determined
solely by the cross-sections [?].

In the opposite limit:
B
C

𝜒�𝜒cr−→ 𝜒(𝑝)
𝜒cr,C→B

∝ 1
𝐷(𝑝) (4.36)

Hence, in this limit, the B/C ratio is expected to decrease with increasing energy.
Moreover, by measuring the B/C ratio as a function of energy, we can estimate the
energy dependence of the grammage and, consequently, of the diffusion coefficient of
Galactic CRs.

It is difficult to overemphasize the significance of this result. The recent AMS-02 data
on secondary-to-primary ratios (see figure 4.4) clearly demonstrate that the B/C ratio
decreases with increasing rigidity above ∼10 GV. This indicates that we are operating
in the regime of weak spallation, allowing us to infer the Galactic grammage from this
observable. A quick fit to data shown in figure 4.4, using 𝜎C→B ' 60 mb, indicates that
the grammage is of the order of 8.5 gr cm−2 at ' 10 GV, exhibiting a scaling behavior
approximately proportional to the rigidity raised to the power of ' −1/3.

Furthermore, by leveraging the observed slope of the proton spectrum, around 2.8 in
the energy range 20-200 GeV (see figure 4.5), we can estimate the injection slope 𝛾 by
recovering from §4.1 that 𝛾 + 𝛿 ≈ 2.8, guiding us to 𝛾 ≈ 2.4. Consequently, we arrived
to the conclusion that the energy spectra of CRs at their sources must be relatively soft,
challenging the predictions based on the original version of DSA7.

Note that equation (4.27) shows that by measuring the grammage, we can only determine
the combination 𝐻/𝐷, and therefore we cannot determine the normalization of the
diffusion coefficient without the knowledge of the halo size.

7Again, for a more comprehensive treatment of this topic, we refer readers to D. Caprioli’s lecture notes
in this volume.
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Figure 4.4: Secondary-to-primary ratios as function of rigidity measured by the AMS-02 experiment [?]. The power-
law fit at high energies is also shown.

To access the diffusion coefficient, we can make certain assumptions about the size of
the Galactic halo. In the 1960s, it was proposed that observing radio emission from our
Galaxy could provide insights into the region where CRs reside [?]. This is because radio
emission is generated through synchrotron radiation emitted by high-energy electrons.
The morphology of the radio emission indicates that it extends well beyond the Galactic
disc, where magnetic fields allow particle diffusion to occur.

The region where CRs are predominantly found has a scale of approximately kiloparsecs,
significantly larger than the size of the Galactic disc. By utilizing the B/C ratio to estimate
𝐻/𝐷 and making assumptions about𝐻, we can then determine the diffusion coefficient,
𝐷, and subsequently calculate the average time that CRs spend within the Galaxy, given
by 𝐻2/𝐷.

At around 10 GeV, B/C amounts roughly to ∼ 0.3, which implies8 a confinement time of
approximately ∼100 Myr for 𝐻 ∼ 3 kpc, and it decreases as the energy increases.

To delve deeper into this topic, we require a reliable method for measuring this time. In
the upcoming section, we will explore how secondary unstable isotopes, which decay
with a timescale comparable to the confinement time, can serve as a cosmic clock,
enabling us to estimate the Galactic residence time.

Combining this information with the grammage, which yields 𝐻/𝐷, will allow us to
obtain the average value of the diffusion coefficient on Galactic scales.

As we will discuss in §4.6, these advancements will pave the way for a theoretical com-
prehension of the microphysics behind the scattering and diffusion of cosmic particles
by the fluctuations present in the interstellar turbulent magnetic fields.

The scrupulous reader may have noticed in figure 4.5 that the canonical slope, approx-

8We have employed equation (4.27) in conjunction with the relationship 2ℎ𝜌d = 𝜇d.
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Figure 4.5: The spectrum of protons as function of rigidity, measured by the AMS-02, and PAMELA experiments [?, ?].

imately ∼ 2.8, does not extend up to very high energies. Instead, the CR spectrum
exhibits a notable change of slope, commonly referred to as a break, at an energy around
200 GeV, where it hardens to about ∼ 2.6. At these energies, however, the equilib-
rium spectrum must be determined by the ratio 𝑄(𝑝)/𝐷(𝑝), where both quantities are
assumed to follow a pure power-law behavior.

Prior to questioning well-established theoretical models to seek the elusive physical
mechanism responsible for this bizarreness, it is crucial to ascertain whether the break
should be attributed to the numerator or the denominator of equation (4.29). In other
words, we need to identify whether the break occurs at the injection stage or during the
transport of CRs in the Galaxy.

Equation (4.36) quickly unravels this conundrum!

Specifically, being dependent only on grammage, the secondary-over-primary ratio is
the key parameter to examine. If the same change of slope is also present in the B/C
ratio, then the conclusion must be that it is due to propagation, indicating a break in the
diffusion coefficient. On the other hand, if no such change of slope is observed in the
B/C ratio, then we must look for the solution at the injection stage.

As shown in figure 4.6, where we extend B/C data over the multi-TeV range thanks
to measurements by DAMPE and CALET, the situation indeed aligns with the former
scenario, and thereby all the current explanations of this feature are given in terms of
some alteration in the galactic transport. These revisions in the transport of CRs might
be associated with a spatial dependence of the diffusion coefficient, as proposed in [?],
or due to the transition from selfgenerated turbulence to preexisting turbulence, see,
e.g., [?].

At such, the recently reported departures from an otherwise boring scale-free power-
law behavior in the galactic CR spectra are of paramount importance, as they offer
valuable insights into the fundamental mechanisms governing the propagation of CRs
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Figure 4.6: Boron-to-carbon ratio as function of kinetic energy per nucleon measured by the AMS-02 [?], CALET [?]
and DAMPE [?] experiments.

in magnetized environments.

U Unstable nuclei: the case of beryllium

The average time that CRs spend in the Galaxy before escaping can be determined by
studying the suppression of the flux of unstable nuclei due to radioactive decay. By
comparing the fluxes of two isotopes of the same chemical elementone stable and the
other unstableit is possible to measure this suppression and estimate 𝜏esc.

Beryllium is an element that is very rare in ordinary matter, and the majority of beryllium
nuclei in CRs are secondary particles formed through the fragmentation of heavier
nuclei. It has two stable isotopes, 9Be and 7Be (if fully ionized), as well as one 𝛽−

unstable isotope, 10Be, with a half-life of 𝜏1/2 = (1.386 ± 0.016) Myr [?]. The decay of
10Be mainly produces 10B, thus altering the abundance of this stable element.

The transport equation for 10Be can be treated as that of a secondary species, assuming
(for simplicity) only one parent nucleus. Additionally, a term describing decay in the
Galaxy reference frame is included:

− 𝜕

𝜕𝑧

[
𝐷Be

𝜕 𝑓Be

𝜕𝑧

]
= − 𝑓Be

𝜏f,Be
− 𝑓Be

𝛾𝜏d,Be
+ 𝑓C

𝜏f,C→Be
(4.37)

Here, 𝜏d = 𝜏1/2/ln(2) represents the rest-frame lifetime of 10Be, and 𝛾 accounts for time
dilation effects. At sufficiently high energies, 10Be decays on a timescale longer than 𝜏esc,
effectively behaving as a stable isotope.

It is worth emphasizing that this is the first case we have discussed where the source
or loss term in the transport equation does not exhibit a 𝛿-function shape in 𝑧. This
distinction arises due to the inclusion of the decay term, which introduces a new com-
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plexity that necessitates a dedicated approach for solving the corresponding transport
equation.

Outside the disk 𝑧 ≠ 0, the transport equation becomes:

− 𝜕

𝜕𝑧

[
𝐷Be

𝜕 𝑓Be(𝑧)
𝜕𝑧

]
+ 𝑓Be(𝑧)

𝛾𝜏d,Be
= 0 (4.38)

Unlike the case of stable elements, the diffusive flux is not conserved. To find a solution,
we assume the form:

𝑓 (𝑧) = 𝐴e−𝛼𝑧 + 𝐵e𝛼𝑧 (4.39)

which implies 𝛼−1 =
√
𝐷𝛾𝜏d, where we have assumed that the diffusion coefficient is

spatially constant.

By imposing the appropriate boundary conditions, we obtain (introducing 𝑦 ≡ e𝛼𝐻):

𝑓Be(𝑧)
𝑓Be,0

= − 𝑦2

1 − 𝑦2 e−𝛼𝑧 + 1
1 − 𝑦2 e𝛼𝑧 (4.40)

The value of the distribution function at 𝑧 = 0 can be obtained by integrating above and
below the disk:

−2𝐷Be
𝜕 𝑓Be(𝑇)

𝜕𝑧

����
0+

= −2ℎ𝑛d𝑐𝜎Be 𝑓0,Be + 2ℎ𝑛d𝑐𝜎C→Be 𝑓0,C (4.41)

To obtain the flux, we utilize equation (4.40), yielding:

𝜕 𝑓Be(𝑇)
𝜕𝑧

����
0+

= 𝛼
1 + 𝑦2

1 − 𝑦2 𝑓Be,0 (4.42)

Combining these equations, we arrive at:

𝑓Be,0(𝑝)
𝜎Be
𝑚p

− 1
𝑐𝑚pℎ𝑛d

√
𝐷Be(𝑝)
𝛾𝜏d,Be

1 + 𝑦2

1 − 𝑦2

 =
𝜎C→Be
𝑚p

𝑓C,0(𝑝) (4.43)

Alternatively, one can write it in terms of grammages

𝑓Be,0

𝑓C,0
(𝑝) = 1

𝜒cr,C→Be

[
1

𝜒cr,Be
+ 1

𝜒′
Be(𝑝)

]−1
(4.44)

where 𝜒′ represents the grammage modified by the decay term and can be expressed
as:

𝜒′
Be(𝑝) = 𝜒Be(𝑝) 1

𝛼𝐻
𝑦2 − 1
𝑦2 + 1

(4.45)

We observe that at high energies, when the proper decay time becomes much larger than
the confinement time (𝛾𝜏d � 𝐻2

𝐷 ), we have 𝛼𝐻 → 0 and expanding in Taylor series:

𝜒′
Be(𝑝)

𝛾𝜏d�𝜏esc

−→ 𝜒Be(𝑝) (4.46)
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Figure 4.7: Ratio of Beryllium over Boron fluxes as measured by AMS-02 [?]. The dotted line shows the case without
decay for 10Be.

As expected 𝜏d cancels out from the grammage, and we recover in this limit the solution
obtained for a stable element.

In the opposite limit, 𝑦 → ∞, and the modified grammage 𝜒′
Be(𝑝) approaches a simpli-

fied form:
𝜒′

Be(𝑝)
𝛾𝜏d�𝜏esc

−→ 𝑚p𝑛dℎ𝑐
√

𝛾𝜏d,Be

𝐷Be(𝑝) = 𝑚p�̄�𝑐
√
𝛾𝜏d𝜏esc (4.47)

It is important to note that in this case, it becomes crucial to account for the additional
contribution to boron production arising from the decay of beryllium. This contribution
can be analytically calculated using the distribution of parent beryllium in the halo, as
outlined in equation (4.40) (a detailed derivation of this contribution is provided in [?]).

In the given context, the ratio of 10Be to 9Be fluxes can be approximated using equa-
tion (4.47), which relates it to the grammage ratio:

10Be
9Be

'
𝜒′

Be
𝜒Be

=

√
𝛾𝜏𝑑
𝜏esc

(4.48)

The preliminary results from the AMS-02 experiment indicate a value of 10Be
9Be ∼ 0.3 at a

kinetic energy per nucleon 𝑇 ∼ 10 GeV/n. Inverting the equation, we can estimate the
escape time as 𝜏esc ' 200 Myr.

Furthermore, the relationship between the scale height 𝐻 and the escape time 𝜏esc can
be quantitatively expressed as:

𝐻 ∼ 7 kpc
(

𝜏esc
200 Myr

) (
𝜒

10 g cm2

)−1
(4.49)

roughly confirming the scaling estimated with the synchrotron emission.
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While directly measuring the CR confinement time 𝜏 by comparing the flux of 10Be to that
of 9Be remains challenging due to the difficulty of separating in mass the two isotopes,
the AMS-02 experiment provides access to the total flux of beryllium, encompassing
7Be, 9Be, and 10Be, as well as the total flux of boron. Examining the ratio of Be/B still
allows us to obtain valuable information, considering that this ratio is influenced by the
decay of 10Be, affecting both the numerator and the denominator (see figure 4.7).

The observed behavior of the Be/B ratio at rigidities ≲ 30 GV, where the ratio changes
due to the decay of 10Be and not solely based on the production cross-section ratio,
suggests that the escape timescale is not significantly faster than the decay timescale at
that energy.

A dedicated analysis of this process, as reported in [?, ?, ?], indicates that 𝐻 is approxi-
mately 6 kpc, although the possibility of a larger value cannot be excluded.

U Electrons and positrons

The fraction of leptons (electrons + positrons) in the total CR flux may be small, but their
unique properties make them crucial for studying fundamental astrophysical problems,
such as CR propagation and the search for sources of antimatter in the Universe.

Theoretical considerations suggest that CR electrons consist of a primary component,
accelerated possibly by SuperNova Remnants (SNRs) along with nuclei, and a secondary
component originating from inelastic collisions between CR nuclei (mostly protons and
helium) and the ISM. However, this secondary contribution accounts for only a small
fraction (less than 4%) of the total electron flux [5, ?, 9].

In the standard model of CR origin, positrons were considered to be predominantly
of secondary production, with a spectrum steeper than that of both primary protons
and secondary nuclei (like boron) due to radiative losses. Within this framework, the
positron fraction, defined as the ratio of positron flux to the sum of electrons and
positrons, was expected to decrease with increasing energy. Early measurements of the
positron fraction provided preliminary and intriguing evidence for a flat or even increas-
ing trend, contradicting the standard CR transport scenario. However, the statistical
limitations of these early measurements, attributed to the very low positron flux in cos-
mic radiation, prevented robust conclusions. Nonetheless, this finding received strong
confirmation from the PAMELA experiment, which demonstrated a growing positron
fraction with energy, at least up to approximately 100 GeV [?]. The excess was also
observed by Fermi-LAT, which utilized Earth’s magnetic field to distinguish between
electrons and positrons [?]. Subsequently, the positron excess was further confirmed
and measured with higher accuracy at even higher energies by the AMS-02 experi-
ment aboard the International Space Station. Thanks to its extended energy range, the
AMS-02 experiment reported the first experimental observation of the positron fraction
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reaching a maximum around ∼500 GeV, followed by a sharp drop at higher energies [?].

In addition, the unambiguous measurement of electron and positron spectra separately
revealed that the rise in the positron fraction is due to an excess of positrons rather than
a deficit of electrons [?].

These discoveries have unveiled a new population of sources that are primarily respon-
sible for the production of electron-positron pairs. Among the various possibilities,
galactic pulsars emerge as the most likely candidates for these leptonic sources, repre-
senting a remarkable breakthrough in our comprehension of the acceleration mecha-
nisms occurring in these objects [?, ?, ?, ?, ?, ?, ?].

The propagation of electrons in the Galaxy is different from that of nuclei. At high ener-
gies, radiative losses become a dominant process, as loss-time scales proportionally to
𝐸−1. Consequently, high-energy electrons have limited lifetimes and can only propagate
within a restricted distance range.

For these high-energy electrons, the primary energy loss mechanisms are synchrotron
radiation resulting from interactions with interstellar magnetic fields and inverse Comp-
ton scattering (ICS) with Galactic radiation fields (such as the cosmic microwave back-
ground, infrared, optical, and UV photons).

In the Thompson approximation, neglecting Klein-Nishina corrections to the 𝛾-e− cross-
section9, the rate of energy loss can be expressed as follows (see P.D. Serpico’s lecture
notes in this volume): ����𝑑𝐸𝑑𝑡 ���� = 4

3𝜎T𝑐𝛾2𝛽2(U𝛾 +UB) = 𝑏0

(
𝐸

10 GeV

)2
(4.50)

Here, 𝜎T represents the Thomson cross section, U𝛾 denotes the energy density in back-
ground photons, and UB = 𝐵2

8𝜋 represents the magnetic field energy density.

In Galactic environments, the energy densitiesU𝑖 typically range fromO(0.1−1 eV/cm3),
leading to a value of 𝑏0:

𝑏0 ∼ 10−14
(U𝛾 +UB

eV/cm3

) (
𝐸

10 GeV

)2
GeV s−1 (4.51)

The energy loss time turns out to be a decreasing function with energy:

𝜏loss ' 𝐸
−𝑑𝐸/𝑑𝑡 ∼ 30 Myr

(
𝐸

10 GeV

)−1
(4.52)

Figure 4.8 provides a comparison between the energy loss timescale for electrons and
the CR escape timescale as derived from nuclei. For typical values of CR transport in

9In the context of the Galaxy, this assumption encounters some limitations, particularly concerning the
ICS of electrons with optical and UV photons. A more accurate approach to ICS reveals spectral features
arising from the diminishing Klein-Nishina cross-section of electrons as their energy surpasses around
∼ 40 GeV when interacting with UV photons [?, ?, ?].
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Figure 4.8: The escape timescale derived in §4.1 is confronted with energy loss timescales for protons (inelastic
scattering) and leptons (synchrotron + IC) in the Milky Way.

the ISM, the transition between the two regimes occurs at a few GeV. This implies that
the Galaxy acts as an effective calorimeter for leptons, as they are expected to lose a
significant portion of their energy during the typical escape time.

The transport equation for leptons is described by10:

− 𝜕

𝜕𝑧

[
𝐷
𝜕 𝑓𝑒
𝜕𝑧

]
= 𝑄𝑒(𝐸)𝛿(𝑧) − 1

𝐸2
𝜕

𝜕𝐸

[ ¤𝐸𝐸2 𝑓𝑒
]

(4.53)

where ¤𝐸 represents the energy loss rate.

To simplify the loss term, it is convenient to approximate it as a catastrophic loss term 11:

− 𝜕

𝜕𝑧

[
𝐷
𝜕 𝑓𝑒(𝐸)
𝜕𝑧

]
= 𝑄𝑒(𝐸)𝛿(𝑧) − 𝑓𝑒(𝐸)

𝜏loss(𝐸) (4.54)

allowing the equation to be solved similarly to unstable nuclei, as the energy losses are
effective throughout the propagation volume.

In the limit of negligible losses, the solution of equation (4.54) corresponds to that of a
stable species. On the other hand, when losses dominate transport (𝜏loss � 𝜏esc), the
solution can be expressed as:

𝑓𝑒 ,0(𝐸) = 𝑄𝑒 ,0(𝐸)ℛSN

2𝜋𝑅2
d

𝜏loss(𝐸)√
𝐷(𝐸)𝜏loss(𝐸)

∝ 𝐸−𝛾− 1+𝛿
2 (4.55)

Thereby, the transition from a diffusion-dominated regime to a losses-dominated regime
results in a softening of the electron spectrum. This transition leads to a change in slope
of

Δ𝛼 = (−𝛾 − 𝛿) − (−𝛾 − 1 + 𝛿
2 ) = 1 − 𝛿

2 ' 0.3 (4.56)

10For CR electrons 𝑝 ' 𝐸
11Notice that assuming ¤𝐸 ∝ 𝐸2 and 𝑓𝑒 ∝ 𝐸−𝛼 the relative difference between the two terms is ∼ 𝛼.

76



HE-AP Th Electrons and positrons

10 102 103

R [GV]

1

10

2

3

4

6

H
/l

ep
to

ns

E0.4

H/e+ [10−3]

H/e− [10−2]

Figure 4.9: The electron(positron)-over-proton ratio as measured by AMS-02 [?]. The high-energy power law fit is
also shown as a dashed line.

In Galactic CRs, the spectral break is not easily discernible due to the strong influence of
solar modulation in the energy range where the break is expected to occur. Moreover,
above the energy range where solar modulation plays a significant role, the most promi-
nent feature in the electron spectrum is the spectral steepening at energies 𝐸 ≲ TeV. The
spectral break in the electron spectrum is well-described by a broken power-law with a
change of slope of approximately ∼1 [?, ?, ?], which is too large to be attributed to the
cooling break resulting from the transition between the diffusion-dominated and losses-
dominated regimes12. This further strengthens the evidence that electron transport is
predominantly governed by energy losses throughout the entire energy range.

When comparing the proton and electron spectra, see figure 4.9, the difference in nor-
malization is likely caused by the different injection mechanisms into the acceleration
process for electrons and protons, as suggested by previous studies [?].

On the other hand, we may be tempted to attribute the steeper slope of the electron
spectrum solely to their energy losses. Between 50 and 500 GeV, the ratio of proton flux
to electron flux is well described by a power law with a slope of ∼0.4.

According to the prediction of the diffusion-losses model, this ratio can be expressed as:

𝑓𝑝
𝑓𝑒

∝ 𝐸−𝛾𝑝−𝛿

𝐸−𝛾𝑒− 1+𝛿
2

∝ 𝐸−(𝛾𝑝−𝛾𝑒 )𝐸
1−𝛿

2 (4.57)

where we differentiate between the injection spectra of protons (𝛾𝑝) and electrons (𝛾𝑒).

By comparing the proton-over-electron ratio with observational data, as shown in the
figure, we find Δ𝛾 = 𝛾𝑒 − 𝛾𝑝 ' 0.1. This suggests that the injection spectrum of electrons
is relatively steep. More accurate analyses, accounting for realistic energy losses in the

12However, refer to [?, ?] for instances where unconventional approaches are explored, continuing to
challenge the foundational principles outlined in these lecture notes.
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Galaxy, have found even larger values ofΔ𝛾 ' 0.3 [9]. Resolving this issue is challenging
since the most probable explanation, namely that the electron spectrum is steepened by
losses in the downstream region of a SNR shock, requires extreme conditions in the late
stages of SNR evolution [?]. Consequently, the origin of the steeper electron spectrum
remains an open question.

Additionally, the efficiency of energy losses introduces a characteristic propagation scale,
denoted as 𝑙 ' √

𝐷(𝐸)𝜏loss, which serves as an effective horizon defining the maximum
distance from which an electron source of energy E can contribute to the flux observed
at Earth.

Quantitatively, this scale is approximately given by

𝑙
𝐻

'
√

𝜏loss
𝜏esc

' 0.6
(

𝐸
10 GeV

)− 1+𝛿
2

(4.58)

Due to the existence of this horizon, only sources within a distance where the propa-
gation time is shorter than the loss time at that energy can significantly contribute to
the observed flux. Assuming a uniform distribution of sources within the Galactic disk,
the estimated number of sources exploding in a loss timescale 𝜏loss and lying within a
distance 𝑙 from Earth is given by

𝑁(𝐸) ' ℛ𝜏loss𝑙2(𝐸)
𝑅2

d
' 50

(
𝐸

TeV

)−2+𝛿
(4.59)

This simple estimation highlights the rapid decrease in the number of contributing
sources with increasing energy, making the high-energy spectrum highly sensitive to
the precise distribution of sources in our galactic vicinity.

What we learn from this is that while we routinely assume a homogeneous distribution
of sources in the galactic disk, in reality, CR sources exhibit discrete spatial and temporal
characteristics. As the number of sources approaches unity (𝑁 ∼ 1), the discrete nature
of the sources becomes increasingly relevant. This is in contrast to nuclei, where the
spectrum is weakly dependent on the exact distribution of sources in space and time, as
protons and nuclei diffuse over kiloparsec scales before escaping the CR halo, effectively
averaging over the distribution of sources on these scales.

As a consequence of equation (4.59), it is plausible that the lepton flux in the multi-TeV
energy range may receive a significant contribution from a local source. Consequently,
the detection of such a source becomes an attainable goal for ongoing experiments like
DAMPE and CALET, which aim to explore this energy range in the near future [?].

It is interesting to apply this model to compute secondary electrons and positrons.

Secondary positrons are primarily produced through nuclear reactions between protons
in the cosmic radiation and protons in the target gas, resulting in the production of
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Figure 4.10: The positron fraction as a function of electron or positron energy as measured by PAMELA, FERMI,
and AMS-02 [?, ?, ?].

charged pions (𝜋±) and other mesons, with positrons being one of the final products of
the decay chain.

Typically, the energy of secondary positrons is a fraction 𝜉 ∼ O(5%) of the parent proton
energy 𝐸𝑝 :

𝐸𝑒+ ' 𝜉𝐸𝑝 (4.60)

The rate of positron (𝑒+) production in the ISM can be expressed as:

𝑞𝑒+(𝐸)𝑑𝐸 = 𝑛𝑝(𝐸𝑝)𝑑𝐸𝑝𝜎pp𝑐2ℎ𝑑𝑛d𝛿(𝑧) (4.61)

Applying the solution of equation (4.54), when losses are unimportant, we obtain:

𝑓𝑒+(𝐸) = 𝑛𝑝

(
𝐸
𝜉

) 2𝑐𝜎pp𝑛𝑑ℎ𝑑
𝜉

𝐻
𝐷(𝐸) (4.62)

Whereas, in the limit where losses dominate, equation (4.55), we have:

𝑓𝑒+(𝐸) = 𝑛𝑝

(
𝐸
𝜉

) 2𝑐𝜎pp𝑛𝑑ℎ𝑑
𝜉

𝜏loss(𝐸)√
𝜏loss(𝐸)𝐷(𝐸)

(4.63)

It is worth noting that the proton spectrum is always evaluated at an energy 1/𝜉 larger
than the positron energy.

In both cases, one obtains:

𝑓𝑒+

𝑓𝑒−
(𝐸) = 𝑞𝑝,0(𝐸/𝜉)

𝑞𝑒 ,0(𝐸)
1
𝜉

𝜒(𝐸/𝜉)
�̂�

∼ 𝐸−𝛾𝑝+𝛾𝑒−𝛿 (4.64)

This is different from the case of B/C, where carbon was the parent of boron, as here
electrons are not parents of secondary electrons. Notwithstanding, assuming 𝛾𝑝 ' 𝛾𝑒 ,
the positron fraction is a decreasing function with energy, approximately following 𝐸−𝛿.
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Figure 4.11: The positron production rate computed in two recent models [?, ?] normalized to the production rate in
the constant-inelasticity approach outlined in the text.

In figure 4.10, we present the positron fraction as a function of energy, which markedly
deviates from the expectation for pure secondary production above ∼10 GeV.

Following equation (4.64), for the positron fraction to increase with energy, it would
require 𝛾𝑒 > 𝛾𝑝 + 𝛿, which is highly unlikely!

Another possibility we may consider to explain the anomaly in the positron fraction
is a significant modification of the cross-sections involved in secondary production
processes. Recent efforts have been made to re-evaluate these cross-sections by fitting
data from collider experiments or by utilizing hadronic interaction models [?, ?]. The
production rates obtained using these approaches can be compared with the rates
predicted by equation (4.61), as shown in figure 4.11. The comparison reveals that there
are no deviations from our initial naive approach at a level that would account for the
observed excess.

As such, we are left with no other option than to postulate the existence of a new
population of positron sources in the Universe!

U Immediate implications of cosmic ray observations

O Efficiency of particle acceleration in Galactic sources

In the previous sections, we have discussed how the abundances of certain elements
such as boron, lithium and beryllium in CRs provide us with valuable estimates of the
time 𝜏esc that CRs spend in the Galaxy before escaping. Now, we delve deeper into
the implications of these observations, specifically focusing on the energetic budget
required by galactic sources to sustain the CR population.
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Having in mind acceleration mechanisms similar to DSA, to describe the injection spec-
trum of protons, we assume a power-law form in momentum that accounts for both
relativistic and non-relativistic particles:

𝑁(𝑝) = 𝑁0

( 𝑝
𝑚𝑐

)−𝛾
, (4.65)

where 𝛾 ≳ 4. The normalization of 𝑁(𝑝) is determined by the condition that the
integrated energy in particles matches the energy released in CRs by a single event:

4𝜋
∫ ∞

0
𝑑𝑝 𝑝2𝑁(𝑝)𝑇(𝑝) = 𝐸CR (4.66)

Solving for 𝑁0, we find

𝑁0 =
𝐸CR

4𝜋𝑐(𝑚𝑐)4𝐼(𝛾) , (4.67)

where 𝐼(𝛾) = ∫ ∞
0 𝑑𝑥 𝑥2−𝛾

[√
𝑥2 + 1 − 1

]
.

Note that due to spectral index values larger than 4, the total energy budget is determined
by protons with energies of ∼GeV, and we can ignore the existence of minimum and
maximum momentum.

Assuming high energies where ionization losses can be neglected and solar modulation
has no significant effect, the proton spectrum contributed by identical sources occurring
at a rate ℛ can be expressed as:

𝑓p(𝑝) = 𝐸CRℛ
8𝜋2𝑅2

d𝑐(𝑚𝑐)4𝐼(𝛾)
( 𝑝
𝑚𝑐

)−𝛾 𝐻
𝐷(𝑝) , (4.68)

Using the definition of intensity, given in appendix ??, and considering that in the
relativistic limit 𝐸 ' 𝑝𝑐, we obtain:

𝐼p(𝐸) = 𝐸CRℛ𝑐
8𝜋2𝑅2

d(𝑚𝑐2)2𝐼(𝛾)
(
𝐸
𝑚𝑐2

)2−𝛾 𝐻
𝐷(𝐸) (4.69)

which gives for 𝐸 = 10 GeV:

𝐸2𝐼p(𝐸) ' 2 × 103
(

𝐸CRℛ
1040 erg s−1

)
GeV m−2 s−1 sr−1 (4.70)

By comparing this equation with the proton flux measured by the PAMELA experiment,
as shown in figure 4.12, we find that in order to maintain a steady-state, the power
that Galactic sources inject into the Galaxy in the form of CR protons needs to be
approximately ℒ ' 𝐸CRℛ ' 1040erg s−1 for a time not smaller than 𝜏esc.

Assuming that CRs are produced by supernova explosions with a rate of about 2 per
century and with a typical mechanical energy release of 1051 erg per explosion, the
luminosity amounts to 6×1041 erg/s, significantly exceeding the required one. Hence, it
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Figure 4.12: The proton intensity measured by the PAMELA experiment over a large fraction of the Solar activity
cycle [?].

is necessary to invoke an efficiency of a few percent in the conversion between supernova
kinetic energy and CR energy to make this hypothesis viable.

Detailed calculations provide a more accurate estimate of the total acceleration effi-
ciency, typically ranging from 5% to 10% (including nuclei), for the majority of super-
nova remnants. This efficiency is well described in recent models of diffusive shock
acceleration [?], upraising the hypothesis that CRs acquire their energy from Galactic
stellar explosions to the rank of a paradigm.

Over the years, alternative sources of energy, such as those in the Galactic Center
region, star clusters, or OB associations13, have been proposed to explain galactic CRs.
Interestingly, the star clusters scenario for the origin of galactic CRs have recently gained
renewed attention based on gamma-ray observations (see S. Gabici’s lecture notes in this
volume).

O Constraints on the microphysics of galactic transport

In the previous sections, we have discussed how the remarkable longevity of CRs,
which greatly exceed the time it would take them to propagate freely at the speed of
light, suggests that CRs undergo a random walk, continually scattered as they traverse
their path from the sources to Earth. Furthermore, the absence of a strong anisotropy,
O(1), toward the galactic center for CRs with energies below 1015 eV implies that multiple
scatterings wash out the anisotropy that would be expected if there were no scattering [?].

The scattering cannot be attributed to ISM nuclei, as the mean free path for Coulomb
collisions of relativistic nucleons in the dilute ISM, given by 𝜆 ' 1

𝑛H𝜎T
∼ 1024 cm, is far

13OB associations consist largely of very young, massive stars (about 10 to 50 solar masses) of spectral
types O and B.
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too long.

Hence, the most likely scattering mechanism is the interaction of CRs with plasma waves,
which are fluctuating electromagnetic fields in the ISM. The presence of a random com-
ponent of the Galactic magnetic field is inferred from fluctuations in rotation measures,
combined with estimates of thermal electron density and synchrotron depolarization.
Recent analyses have reported a strength of this component at around 1 − 3𝜇G [?].

Understanding the production of these plasma waves and their influence on the dynam-
ics of CR particles is a crucial topic in the theoretical investigation of CR physics.

Typically, the energy spectrum of the turbulent field is assumed to follow a power-law
distribution with an outer scale of 𝐿 ∼ 10 pc, where energy is injected. This energy then
cascades down to smaller scales until it dissipates at the dissipation scale.

For CR nuclei in the GeV-TeV energy range and charge 𝑍, the Larmor radius in this
magnetic field is given by:

𝑟L ' 10−5 pc
(
𝐸/𝑍

10 GeV

) (
𝐵
𝜇G

)−1
(4.71)

This length scale is much smaller than the random field injection scale but larger than
the dissipation scale. Consequently, a CR nucleus is expected to encounter numerous
magnetic scattering centers before reaching Earth.

This transport mechanism is understood in terms of resonant wave-particle interaction,
where CRs primarily scatter off waves with wavelengths comparable to their gyroradius.

Under these conditions, a particle interacts with a wave remaining in phase with the
wave over many cycles. This scattering leads to an effective diffusion in pitch angle
which, in turn, regulates their diffusion in real space.

The resonant condition can be expressed as

𝑘res =
1

𝜇𝑟L
(4.72)

where 𝑘res represents the wavelength of the resonant magnetic perturbation and 𝜇 is the
cosine of the particle’s pitch angle.

Within quasilinear theory the spatial diffusion coefficient results from the pitch-angle-
cosine 𝜇 average of the inverse of the pitch-angle diffusion coefficient 𝐷𝜇𝜇 (see ap-
pendix 2.3):

𝐷 ' (1 − 𝜇2)𝑣2

𝐷𝜇𝜇
(4.73)

The pitch-angle diffusion rate must depend upon the distribution of wave energy, and
in weakly turbulent magnetic fields, we obtain:

𝐷𝜇𝜇 ' 𝜋Ω(1 − 𝜇2)𝑘resℱ (𝑘res) (4.74)

83



HE-AP Th Immediate implications of cosmic ray observations

where Ω = 𝑐/𝑟L is the gyrofrequency, and ℱ is the power in modes of wavenumber 𝑘res

normalized such that its integral gives the fraction of energy density in the turbulent
components with respect to the regular field:∫ ∞

1/𝐿
𝑑𝑘 ℱ (𝑘) = 〈𝛿𝐵2〉

𝐵2
0

(4.75)

Intuitively, if we associate the angle by which the fieldlines are bent 𝛿𝐵/𝐵0 with the
scattering angle 𝛿𝜃, and assume the particles encounter uncorrelated waves at frequency
Ω, then the angular diffusion coefficient is 〈(𝛿𝜃)2〉/𝛿𝑡 ∼ Ω(𝛿𝐵/𝐵0)2 which is essentially
equation (4.74).

Combined with equation (4.73) the diffusion coefficient reads

𝐷 ' 1
3 𝑟L𝑐

1
𝑘resℱ (𝑘res) (4.76)

We recall now from equation (4.27) that the best fit to secondary-over-primary CRs in the
Galaxy indicates a diffusion coefficient of𝐷/𝐻 ∼ 2 for particles around 10 GeV, where𝐷
is measured in units of 1028 cm2 s−1 and𝐻 represents the scale height in kpc. Combining
this information with the determination of the halo size obtained from unstable species,
𝐻 ∼ 5 kpc, we obtain a measurement of the normalization of the diffusion coefficient to
be approximately 𝐷 ∼ 1029 cm2 s−1.

By inverting equation (4.76), we can finally determine the required level of turbulence
at the scale of 10 GeV particles in order to replenish the observed amount of secondary
particles:

𝑘resℱ (𝑘res) ' few × 10−6 (4.77)

In summary, even such a small perturbation at a scale corresponding to the size of the
solar system, ∼A.U., is enough to significantly extend the transport time of CRs in the
Galaxy from thousands of years to millions of years!
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U Small Perturbations in a Fluid: Sound Waves

In fluid dynamics, we often encounter scenarios where disturbances in the fluid are
small compared to the equilibrium values of a steady state solution. Consider a fluid
at equilibrium with a density 𝜌0(𝑥) at a given point. If a disturbance occurs at time 𝑡,
altering the density to 𝜌(𝑥, 𝑡), we define the relative density difference as 𝛿𝜌

𝜌 = 𝜌(𝑥,𝑡)−𝜌0(𝑥)
𝜌0(𝑥) .

We assume that a linear theory can be developed as long as this relative difference
remains 𝛿𝜌

𝜌 � 1.

The validity of linear theory allows us to linearize the equations of motion around the
equilibrium state. This simplification transforms the complex, non-linear fluid dynamics
equations into more manageable linear differential equations. These linear equations
are advantageous as they adhere to the superposition principle, making the analysis
and solution of these disturbances more straightforward.

Within this linear framework, the disturbances propagate as a series of normal modes.
Each mode represents a wave with a distinct frequency. Any arbitrary disturbance in the
fluid can thus be reduced to a linear superposition of these fundamental wave modes.

However, it is crucial to note that certain conditions might lead to one or more normal
modes exhibiting exponential growth over time. In such scenarios, even infinitesimal
perturbations can amplify beyond the linear theory’s scope, rendering the linear ap-
proximation invalid. This exponential growth is indicative of an instability in the fluid’s
equilibrium state.

To descrive the dynamics of small perturbations, we revisit the fundamental fluid equa-
tions. The conservation law for any physical quantity 𝐴 in fluid dynamics is generally
expressed as:

𝜕

𝜕𝑡
(density of 𝐴) + ∇ · (flux of 𝐴) = 0

This equation encapsulates the principle that any change in the density of 𝐴 over time
must be compensated by the divergence of its flux. Source and sink terms are included
on the right-hand side if they are present in the system.

In this context, we are adopting the Eulerian perspective, which focuses on describing
physical quantities at fixed spatial locations over time. Accordingly, the temporal change
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of a quantity 𝐴 in the Eulerian perspective is described by the partial time derivative:

𝜕𝐴
𝜕𝑡

=
𝐴(x, 𝑡 + 𝛿𝑡) − 𝐴(x, 𝑡)

𝛿𝑡

In contrast, the Lagrangian view offers a different approach, emphasizing tracking phys-
ical quantities as they move with the fluid flow. This perspective is akin to following
a fluid parcel as it travels through space and time. Here, the temporal changes in a
quantity 𝑄 are described by a convective time derivative:

𝑑𝐴
𝑑𝑡

=
𝐴(x + 𝛿x, 𝑡 + 𝛿𝑡) − 𝐴(x, 𝑡)

𝛿𝑡

where 𝛿x is the displacement, which can be expressed as v𝛿𝑡, with v being the velocity
of the fluid element.

To transition from the fixed fluid element description (Lagrangian) to a fixed position in
space description (Eulerian), we use the relation:

𝑑
𝑑𝑡

→ 𝜕

𝜕𝑡
+ u · ∇ (5.1)

To describe the dynamics of a fluid, we introduce these quantities that are functions of
both space and time: density (𝜌), velocity (v), and pressure (𝑃).

The continuity equation reflects the principle of mass conservation in fluid dynamics:

𝑑𝜌
𝑑𝑡

= 0 → 𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌v) = 0 (5.2)

The Euler equation describes the conservation of momentum in the fluid:

𝜕v
𝜕𝑡

+ v · ∇v = −∇𝑃
𝜌

(5.3)

This equation relates the rate of momentum density (𝜌v) to the gradient of pressure.

Additional forces, like gravity (represented through its potential by −∇𝜙), can be in-
cluded on the RHS.

To solve the continuity and Euler equations, the relationship between pressure and other
fluid properties must be established. This is where the equation of state (EoS) becomes
essential.

In the case of a barotropic fluid, a common simplification in fluid dynamics, the EoS is
expressed as 𝑃 = 𝑃(𝜌). This relationship directly relates pressure to density, providing
a way to close the system of equations.

For more complex scenarios, where the EoS also depends on temperature, an additional
equation governing the evolution of temperature is necessary.

See appendix on hydrostatic. TBD
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Consider a fluid in a static steady state defined by a constant density 𝜌0(𝑥), pressure
𝑃0(𝑥), and zero velocity v0(𝑥) = 0. This state, being time-independent, will persist
indefinitely in the absence of external disturbances.

Now, let’s introduce small perturbations into this system, denoted by 𝛿𝐴where 𝐴 repre-
sents the fluid properties, and the relative perturbation 𝛿𝐴/𝐴 � 1. These perturbations
lead to changes in the fluid’s velocity, density, and pressure:

v = 0 → v = 𝛿v (5.4)

𝜌 = 𝜌0 → 𝜌 = 𝜌0 + 𝛿𝜌 (5.5)

𝑃 = 𝑃0 → 𝑃 = 𝑃0 + 𝛿𝑃 (5.6)

With these perturbations, the continuity equation is modified as:

𝜕

𝜕𝑡
𝛿𝜌 + 𝜌0∇ · 𝛿v = −∇ · (���𝛿𝜌𝛿v) ' 0 (5.7)

Similarly, the Euler equation for the perturbed state becomes:

𝜕

𝜕𝑡
𝛿v = −(((((𝛿v · ∇𝛿v − 1

𝜌0 +��𝛿𝜌
∇𝛿𝑃 ' −∇𝛿𝑃

𝜌0
(5.8)

In both cases, we simplified the equations by linearizing them, which involves discarding
higher-order terms and using the equations valid for the background state. Specifically,
we eliminate the non-linear term v · ∇v, which often complicates or renders problems
unsolvable and is a primary factor in modeling turbulence within fluid equations.

Now, we focus exclusively on adiabatic perturbations, wherein the entropy remains
constant. Under this condition, the variation in pressure, typically a function of density
𝜌 and entropy 𝑠, can be expressed as:

𝛿𝑃 =
(
𝜕𝑃
𝜕𝜌

)
𝑠
𝛿𝜌 +

(
𝜕𝑃
𝜕𝑠

)
𝜌

𝛿𝑠 '
(
𝜕𝑃
𝜕𝜌

)
𝑠
𝛿𝜌 ≡ 𝑐2

𝑠,0𝛿𝜌 (5.9)

Here, 𝑐2
𝑠,0 ≡

(
𝜕𝑃
𝜕𝜌

)
𝑠

is considered a constant. In particular, for an equation of state

𝑃 = 𝐾𝜌𝛾, the constant is given by 𝑐2
𝑠,0 = 𝛾𝑃0

𝜌0
.

Moving forward, by differentiating the continuity equation with respect to time and
using the Euler equation, we can combine the two to derive:

𝜕2

𝜕𝑡2
𝛿𝜌 − ∇2𝛿𝑃 = 0 (5.10)

Finally, applying the equation of state, we arrive at:
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𝜕2

𝜕𝑡2
𝛿𝜌 − 𝑐2

𝑠,0∇2𝛿𝜌 = 0 (5.11)

This equation is a hyperbolic partial differential equation, commonly known as the wave
equation. Indeed, the general solution of this equation is in the form of:

𝛿𝜌 = 𝑅(𝑥 − 𝑐𝑠,0𝑡) + 𝐿(𝑥 + 𝑐𝑠,0𝑡) (5.12)

Here, 𝑅 and 𝐿 are arbitrary functions representing disturbances propagating to the right
and left, respectively, at a velocity 𝑐𝑠,0, which turns our to be the speed of sound in the
medium.

Given that the problem is both linear and homogeneous, the solution to the wave
equation can be effectively found using eigenmode decomposition. This approach
allows us to break down any disturbance into a series of Fourier modes, each of which
can be solved independently.

For each mode characterized by a wavenumber 𝑘, we seek solutions in the following
form:

𝛿𝜌 = 𝜌0𝐴e𝑖(k·x−𝜔𝑡) (5.13)

Here, 𝐴 represents a constant amplitude, with the condition 𝐴 � 1 ensuring that the
perturbations remain small.

We can demonstrate that any function 𝑓 of this type satisfies the following relations:

𝜕2

𝜕𝑡2
𝑓 = −𝜔2 𝑓 (5.14)

∇2 𝑓 = −𝑘2 𝑓 (5.15)

Consequently, we derive from the wave equation that the condition for the existence of
non-trivial solutions is:

𝜔2 − 𝑐2
𝑠,0𝑘

2 = 0 (5.16)

This condition effectively establishes a dispersion relation, indicating that for a given
medium with a sound speed of 𝑐𝑠,0, the frequency of the wave is directly proportional
to its wavenumber.

Reverting to the original form of the perturbation and taking the real part1, the solution
for a single mode propagation is expressed as:

𝛿𝜌

𝜌0
= 𝐴 cos(𝑘𝑥 + 𝜔𝑡) + 𝐵 cos(𝑘𝑥 − 𝜔𝑡) (5.17)

here, 𝐴 and 𝐵 are constants that determine the amplitude of the waves traveling in the
positive and negative 𝑥-directions, respectively.

1Recall Euler’s formula 𝑒 𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥.
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Figure 5.1

This equation represents plane wave solutions with phase velocity 𝑉𝑝 = 𝜔
𝑘 = 𝑐𝑠,0, and

group velocity 𝑉𝑔 = 𝜕𝜔
𝜕𝑘 = 𝑐𝑠,0.

It is crucial to note that the group velocity𝑉𝑔 is equal to the phase velocity𝑉𝑝 , indicating
that these waves are non-dispersive. This means that all waves travel at the same speed
in the medium, preserving the shape of the wave packet over distance.

Sound waves are longitudinal because 𝛿𝑣 and 𝑘 are parallel.

Furthermore, these waves are compressional because ∇ · 𝛿v ≠ 0, indicating that they
involve variations in volume and density as they propagate through the medium.

In summary, any solution of the wave equation, and thus any generic small perturbation
in the fluid, can be expressed as a linear combination of plane waves, each described by
the equation above and satisfying the dispersion relation. These solutions encapsulate
the essence of what we term as sound waves.

Problem. Derive Gravity waves

U From Linear to Non-Linear: The Formation of Shock Waves

This section aims to qualitatively illustrate how the formation of shock waves is a natural
and, consequently, a frequent phenomenon in various astrophysical environments.
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In our previous discussion, we examined the propagation of small perturbations in a
medium and determined that they travel at a sound speed denoted by 𝑐𝑠,0 =

√
𝛾𝑃0
𝜌0

.
This speed was assumed to be constant (at least in the linear regime) throughout the
medium.

However, when we consider sound waves of finite amplitude, we enter the non-linear
regime. In this regime, the propagation velocity of the waves is no longer constant but
depends on the local density of the medium: the higher the density, the greater the
sound speed at that point.

To be checked:

𝑐𝑠 =
2𝑐𝑠,0
𝛾 − 1

[(
𝜌

𝜌0

) (𝛾−1)/2
− 1

]
' 𝑐𝑠,0

(
𝛿𝜌

𝜌

)
Consider a waveform as the solution found beforehand. Since this crest represents
a region of higher density, it propagates faster than the leading or trailing edges of
the wave. Consequently, the crest of the wave, moving fastest, gradually overtakes
the trough following it. This overtaking would result in a multi-valued wave profile,
which is physically implausible. To resolve this inconsistency, the wave breaks, forming
a discontinuity known as a shock wave.

From this phenomenon, we can glean some insights into the nature of shock waves:

• Shock waves are typically associated with matter moving at a speed exceeding the
sound speed.

• The transition to shock wave conditions occurs more rapidly than the medium can
adjust or respond to the change.

• As the shock wave’s speed exceeds any signal-bearing speed in the medium, the pre-
shock region remains unaware of the impending disturbance. Thus, the alterations
in fluid properties (such as density, temperature, and velocity) occur so abruptly that
they manifest as discontinuities in these fluid variables.

U Interstellar Shock Waves

Hydrodynamics often presents discontinuous solutions, meaning that there exist sur-
faces where physical quantities change abruptly. Mathematically, this is represented
by differing values at the left and right limits of a point. However, physically, this
discontinuity is not infinitely sharp as suggested in mathematical theory; rather, the
change occurs over a region smaller than all other physical scales involved. A shock
is a specific type of discontinuity characterized by a surface that separates two fluid
regions with differing properties. Importantly, this surface allows for the transfer of
mass, momentum, and energy across it.
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Figure 5.2

As seen beforehand, shocks are a natural consequence in the non-linear regime of fluid
dynamics or magnetohydrodynamics (MHD).

Shocks are especially relevant in astrophysics; the gas post-shock emits significantly
more than pre-shock gas, making these events more detectable.

Unlike terrestrial shocks, astrophysical shock waves are predominantly collisionless.
In standard atmospheric conditions, where the number density of particles is approx-
imately 𝑛 ∼ 1023 cm−3, and the cross-section for collisions2 around 𝜎 ∼ 10−16 cm2, the
mean free path 𝜆 ' 1/(𝑛𝜎) of a particle is ' 10−7 cm. In such conditions, collisions
between particles are frequent, leading to the transformation of ordered kinetic energy
into disordered (thermal) kinetic energy, characteristic of a collisional shock.

In contrast, astrophysical environments, where most particles are ionized, present a
different scenario. The cross-sections for ionized particles are typically on the order of
𝜎 ∼ 𝜋𝑟2

0 ∼ 10−26 cm2 as 𝑟0 ∼ fm is now the nuclear radius. More importantly, these
environments have much lower particle densities, about 𝑛 ∼ 1 cm−3. As a result, the
mean free path in such settings is � Mpc! This means that the formation of the shock
and its energy dissipation mechanisms do not primarily occur through particle collisions
or Coulomb interactions. Instead, these processes are predominantly governed by
interactions with the ambient magnetic field. The detailed microphysics of astrophysical
shocks are complex and beyond the scope of this discussion.

Despite the microscale complexity at discontinuities (e.g., finite conductivity determin-
ing the size), conservation laws of mass, momentum, and energy remain applicable.

For non-relativistic shock waves, we can define the reference frame of the unshocked
medium or Galaxy frame, where 𝑢′1 = 0, the shock propagates into the unshocked
medium at a speed 𝑢′𝑠 , while the speed of shocked gas is 𝑢′2(< 𝑢′𝑠).
More convenient is to use a frame of reference where the discontinuity surface is station-
ary, with 𝑢𝑠 = 0. So the upstream medium approaches it at a speed 𝑢1 = −𝑢′𝑠 , while the
shocked fluid moves away from the shock front at a speed 𝑢2 = 𝑢′𝑠 − 𝑢′2. Consequently,

2In the case of neutral particles, the hard sphere approximation holds true, where 𝜎 = 𝜋(𝑟𝐴 + 𝑟𝐵)2 with
𝑟 denoting the atomic radii of the colliding atoms.
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the relative speed between the shocked and unshocked fluids is 𝑢rel = 𝑢1 − 𝑢2.

In the following, it will be easier to refer our equations to the shock front frame, and
we will categorize the physical quantities based on their position relative to the shock:
those upstream of the shock are labeled as ’1’ and those downstream as ’2’.3

In the context of shock dynamics, we will focus on key thermodynamic quantities:
density, pressure, temperature, and momentum across the two media (upstream and
downstream of the shock). To analyze these, we first want to write conservation equa-
tions in the form 𝑑𝐽

𝑑𝑧 = 0, where 𝐽 represents the flux of a conserved quantity (be it mass,
energy, or momentum).

Following this approach, it implies:∫ 𝜖

−𝜖
𝑑𝐽
𝑑𝑥

= 𝐽2 − 𝐽1 = 0 (5.18)

As common here, we introduce the notation [𝐽]sh = 0 to denote the change in the flux
across the shock expressed as 𝐽2 − 𝐽1 = 0.

Let us summarize the key transport equations for a fluid, assuming that the only acting
force density is the pressure gradient ∇𝑃, and neglecting the effects of magnetic or
gravitational fields.

First, the mass continuity equation is given by:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0 (5.19)

where 𝜌 represents the fluid density, and u is the fluid velocity.

Next, the conservation of momentum per unit volume is described by:

𝜌
𝜕u
𝜕𝑡

+ 𝜌(u · ∇)u = −∇𝑃 (5.20)

Finally, the conservation of energy per unit volume is expressed as:

𝜕

𝜕𝑡

(
1
2𝜌𝑢

2 + 𝜌𝑈
)
+ ∇ ·

[
u

(
1
2𝜌𝑢

2 + 𝜌𝑈 + 𝑃
)]

= 0 (5.21)

here 𝜖 = 𝜌𝑈 denotes the internal energy per unit volume.

For our analysis, we focus on a one-dimensional (planar) shock in a stationary state
(𝜕𝑡 → 0) and apply these conservation laws within the reference frame where the
discontinuity is stationary.

Applying the mass continuity equation, we derive:

𝜕

𝜕𝑧
(𝜌𝑢) = 0 (5.22)

3Use instead u and d.
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Next, from the momentum equation, and utilizing the mass continuity equation in
Eq. 5.22, we obtain:

𝜌𝑢
𝜕𝑢
𝜕𝑧

= −𝜕𝑃
𝜕𝑧

→ 𝜕

𝜕𝑧
(𝑃 + 𝜌𝑢2) = 0 (5.23)

Moving to the energy equation and again invoking the continuity equation, we find:

𝜕

𝜕𝑧

(
𝜌𝑢

[
1
2𝑢

2 +𝑈 + 𝑃
𝜌

] )
= 0 (5.24)

This can be expressed in terms of specific enthalpy 𝑤 (see Appendix):

𝑤 = 𝑈 + 𝑃
𝜌

=
𝛾

𝛾 − 1
𝑃
𝜌

(5.25)

Therefore, we arrive at the equation:

𝜕

𝜕𝑧

(
1
2𝑢

2 + 𝛾

𝛾 − 1
𝑃
𝜌

)
= 0 (5.26)

Summarizing, assuming planar geometry, and in the frame of the shock, the conserva-
tion of fluxes of mass, momentum energy across the shock write

[𝜌𝑢]sh = 0 (5.27)[
𝜌𝑢2 + 𝑃]

sh = 0 (5.28)[
1
2𝑢

2 + 𝛾

𝛾 − 1
𝑃
𝜌

]
sh

= 0 (5.29)

These conditions are known as the Rankine-Hugoniot jump conditions. They represent
the dynamical equations for solutions that express conservation across the discontinuity
of a shock, essentially establishing relationships between quantities on either side of the
shock front.

We are dealing with three unknowns and have three corresponding equations. Apart
from the trivial solution where all quantities remain constant, our aim is to derive the
non-trivial solution.

To proceed, we remind the definition of sound speed:

𝑐s =
(
𝜕𝑃
𝜕𝜌

)1/2
=

(
𝛾𝑃
𝜌

)1/2
(5.30)

Here, we assume an ideal gas so the equation of state is 𝑃 = 𝐾𝜌𝛾, with 𝛾 being the ratio
of specific heats. For a mono-atomic gas, in particular, 𝛾 = 5/3.

We then define the Mach number as the ratio of the shock speed to the sound speed in
region 𝑖, denoted as ℳ𝑖 = 𝑣𝑖/𝑐s. From this, it follows that:

𝜌𝑖𝑢2
𝑖 + 𝑃𝑖 = 𝜌𝑖𝑐2

s,𝑖

(
𝑢2
𝑖

𝑐2
s,𝑖

)
+ 𝑃𝑖 = (1 + 𝛾ℳ2

𝑖 )𝑃𝑖 (5.31)
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If we fix the quantities in the upstream region, 𝜌1, 𝑢1 and 𝑃1, hence solving the equations
for the downstream using Eq.s 5.27-5.29 will lead us to (see Appendix):

𝜌2

𝜌1
=

𝑢1
𝑢2

=
(𝛾 + 1)ℳ2

1

(𝛾 − 1)ℳ2
1 + 2

(5.32)

𝑃2
𝑃1

=
2𝛾ℳ2

1
𝛾 + 1 − 𝛾 − 1

𝛾 + 1 (5.33)

𝑇2
𝑇1

=

[
2𝛾ℳ2

1 − (𝛾 − 1)] [(𝛾 − 1)ℳ2
1 + 2

]
(𝛾 + 1)2ℳ2

1
(5.34)

Under the assumption of strong shock conditions, characterized by ℳ1 � 1, and con-
sidering a monoatomic gas with 𝛾 = 5/3, we can deduce the jump in density:

𝑟 =
𝜌2

𝜌1
=
𝑢1
𝑢2

=
𝛾 + 1
𝛾 − 1 = 4 (5.35)

here, 𝑟 represents the compression factor, defined as 𝜌2
𝜌1

. This factor is dependent on
the adiabatic index 𝛾 and the Mach number of the shock. It’s noteworthy that the
compression factor cannot exceed 4.

For the pressure jump, we obtain:

𝑃2
𝑃1

=
2𝛾

𝛾 + 1ℳ
2
1 =

5
4ℳ

2
1 (5.36)

From the frame of reference at the discontinuity, we observe an approaching gas with
velocity 𝑢1, which is altered to 𝑢2 ≈ 1

4𝑢1 on the opposite side. Consequently, the plasma
is decelerated and becomes denser. However, energy conservation dictates that this
energy must transform into heat. Examining the temperature ratio 𝑇2

𝑇1
under the same

conditions, we find:
𝑇2
𝑇1

=
2𝛾(𝛾 − 1)
(𝛾 + 1)2 ℳ2

1 (5.37)

Therefore:

𝑘𝐵𝑇2 = 𝑘𝐵𝑇1
2𝛾(𝛾 − 1)
(𝛾 + 1)2

𝑢2
1

𝑐2
s,1

=
3
16𝑚𝑝𝑢2

1 (5.38)

In this equation, we have utilized 𝜌𝑖 = 𝑛𝑖𝑚𝑝 , ℳ2
𝑖 =

𝑢2
𝑖

𝑐2
s,𝑖

, 𝑐2
s,𝑖 =

𝛾𝑃𝑖
𝜌𝑖

, and 𝑃𝑖 = 𝑛𝑖𝑘𝐵𝑇𝑖 .

It’s interesting to note that for typical astrophysical shocks, with 𝑢1 ≳ 104 km/s, the
temperature 𝑇2 reaches approximately ∼ 107 K. This is what happens for example in a
supernova explosion ℳ ∼ 103 or in a GRB. The plasma crosses shocks and heats up
until it starts radiating in X-ray.

In summary, shocks convert bulk kinetic energy of upstream medium to thermal
(internal) energy downstream.
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The plasma behind the shock is

• Compressed 𝜌2 = 4𝜌1

• Slown down 𝑣2 = 1
4𝑣1

• Heated 𝑇2 � 𝑇1

The transformation of inflow kinetic energy into thermal energy in shock waves is
accompanied by the generation of entropy. The key to this transformation is the collisions
among particles within the shock wave. These collisions convert the ordered bulk kinetic
energy, where particle velocities are aligned, into disordered internal kinetic energy, or
heat.

However, as we have previously noted, the mean free path for collisions in astrophysical
conditions can be macroscopically large. In such scenarios, energy exchange among
particles is mediated by electromagnetic fields. Therefore, the thickness of the shock
is more characterized by the non-relativistic Larmor radius of a proton. This radius
reflects the scale over which particles are deflected by the magnetic field present at the
shock front.

Considering a typical proton velocity of ∼ 104 km/s in a supernova explosion, and
within a typical galactic magnetic field of 1𝜇G, the Larmor radius (𝑟B) is calculated as:

𝑟B =
𝑚𝑝𝑣𝑐

𝑒𝐵
' 1010 cm (5.39)

When compared to typical lengths involved in supernova (SN) explosions, which are
on the order of a parsec (see later), the shock thickness is several orders of magnitude
smaller. Therefore, in the grand scale of such astrophysical phenomena, the approxi-
mation of an infinitely thin shock layer is justified.

Finally, we want to compute the post-shock Mach number 𝑀2:

ℳ2 =
𝑢2
𝑐s,2

= ℳ1
𝑢2
𝑢1

𝑐1
𝑐2

= ℳ1
𝑢2
𝑢1

(
𝑇1
𝑇2

)1/2
(5.40)

in the strong shock limit:

ℳ2 = ℳ1
𝛾 − 1
𝛾 + 1

[
(𝛾 + 1)2

2𝛾(𝛾 − 1)ℳ2
1

]1/2

=
(
𝛾 − 1
2𝛾

)1/2
' 0.45 (5.41)

so a shock converts supersonic gas into subsonic gas. In doing so, it increases the specific
entropy of the gas by an amount (see appendix):

𝑠2 − 𝑠1 = 𝑐P ln
(
𝑇2
𝑇1

)
− 𝑘
𝑚

ln
(
𝑃2
𝑃1

)
(5.42)

In another terminology, a shock changes the entropy shifting gas to a higher adiabat.
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Notice then that the non trivial solution makes sense only if the Mach number 𝑀1 is
larger than one. In the opposite case, we the variation of entropy would be in the sense
to decrease it, which is not allowed by second principle of thermodynamics. In other
words we would have invented a system to transform heat in ordered work! Shocks can
only form in supersonic motion.

O Supernovae in the Milky Way

Historical SNe: Kepler 1604, Tycho SNR 1572, SN1006 SNR, Cas A 1680?

We distinguish between:

• Core collapse supernovae (Type II, Ib/c,..)

– Progenitor: Massive star (≳ 8 𝑀�)

– Energy source: gravitational collapse (≳ 1053 erg)

– Kinetic energy: ∼ 1051 erg

– Ejecta mass > 4 𝑀�
– Neutron star (or BH)

• Thermonuclear supernovae (Type Ia)

– Progenitor: accreting CO white dwarf, or merging white dwarfs

– Energy source: nuclear fusion (C/O -> Fe-group)

– Kinetic energy: 1.2 × 1051 erg

– Ejecta mass ∼ 1.4 𝑀�
– Total disruption of star

U Dynamical Evolution of Supernova Remnants

Our goal is to model the explosion of a SN, which can be approximated as the instanta-
neous release of energy𝐸 at the origin (𝑟 = 0) and at the initial moment (𝑡 = 0). Assuming
that the external medium is homogeneous and static, the motion of the resulting shock
wave will be symmetrically radial.

In the initial phase of the explosion, the energy released is so immense that the effect of
the density 𝜌0 of the surrounding medium is negligible. This leads to the shock wave
propagating at a constant, ballistic velocity, a stage known as the Free Expansion Phase.

During this phase, an amount of matter𝑀ej is ejected with velocity 𝑣0 and kinetic energy
𝐸SN. From this we can derive the constant velocity:

𝐸SN =
1
2𝑀ej𝑣2

0 → 𝑣0 = 104
(

𝐸SN

1051 erg

)1/2 (
𝑀ej

𝑀�

)−1/2
km/s
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This ejection velocity can be compared with the sound speed 𝑐s in the ISM:

𝑐s =
(
𝛾
𝑘𝑇
𝑚𝑝

)1/2
' 10

(
𝑇

104 K

)1/2
km/s

For a monoatomic gas, 𝛾 = 5/3. Given these conditions, the Mach number (ℳ) is
approximately 103, indicating that a strong shock is indeed produced.

The evolution of the supernova remnant during this phase can be described simply by:

𝑣𝑠 = 𝑣0

𝑅𝑠 = 𝑣0𝑡

This phase is characterized by the shock wave expanding outward at a constant velocity,
unimpeded by the surrounding medium.

The free expansion phase remains valid under the condition that the mass 𝑀sw swept
up by the shock is negligible compared to the mass 𝑀ej of the ejecta:

𝑀ej � 𝑀sw ' 4𝜋
3 𝑅3

𝑠𝜌0

This condition ensures that the momentum of the ejecta is largely unaffected by the inter-
stellar medium. However, as the shock wave expands, it accumulates more interstellar
material, increasing 𝑀sw.

Notice that shock waves generated by SN explosions may propagate through the ISM,
or through the wind of the progenitor star, where the density, 𝜌0 is much smaller, hence
the free expansion phase is longer.

When the swept-up mass becomes comparable to the ejecta’s mass, the expansion of
the remnant inevitably slows down. This transition occurs at a distance, denoted as 𝑅ej,
which can be approximated when 𝑀ej ' 𝑀sw:

𝑅ej ' 2
(
𝑀ej

𝑀�

)1/3 ( 𝑛0

cm−3

)−1/3
pc

Correspondingly, a characteristic time 𝑡ej can be determined for this phase:

𝑡ej '
𝑅ej

𝑣0
' 2 × 102

(
𝑀ej

𝑀�

)5/6 (
𝐸SN

1051 erg

)−1/2 ( 𝑛0

cm−3

)−1/3
year

As the shock wave expands through the surrounding medium, it sweeps up and accu-
mulates material, pushing it into a thin shell at the shock front. To estimate the thickness
of this shell, we compare the total mass accumulated with the mass in a shell where the
density is 4𝜌0, reflecting the compression of the downstream material:

4𝜋
3 𝑅3

s𝜌0 = 4𝜋𝑅2
sΔ𝑅(4𝜌0)
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From this, we derive the relative shell thickness:
Δ𝑅
𝑅s

=
1
12 ∼ 10%

This calculation confirms the validity of the thin shell approximation, indicating that the
accumulated material forms a relatively narrow layer compared to the overall radius of
the shock wave.

We can express the mass within this shell as:

𝑀 =�
�𝑀ej + 4𝜋

∫ 𝑅s

0
𝑑𝑅𝑅2𝜌0 ' 4𝜋

3 𝑅3
s𝜌0

where we assume that the mass of the ejecta is negligible compared to the mass of the
swept-up material.

The expansion of the shock wave occurs adiabatically. In fact, for temperatures 𝑇 ≳
106 K, the radiative cooling of the post-shocked gas is extremely inefficient as the cooling
timescale is significantly longer than the expansion timescale of the shock wave.

Given this adiabatic condition, we can apply the energy conservation equation:

𝐸 = 𝐸𝑘 + 𝐸th =
1
2𝑀𝑣2

sh + 𝜖
4𝜋
3 𝑅3

s =
1
2𝑀𝑣2

sh + 𝑃in
𝛾 − 1

4𝜋
3 𝑅3

s = const

In the Sedov phase of SNR expansion, momentum conservation is governed by the
equation:

𝑑
𝑑𝑡

(𝑀𝑣sh) = 4𝜋𝑅2
s(𝑃in −���𝑃out)

In the case of a strong shock, the external pressure 𝑃out is negligible compared to the
over-pressurized internal gas, and thus it is omitted from the equation.

Seeking power law solutions, we propose a form for the shock radius:

𝑅s = 𝐴𝑡𝛼 → 𝑣s =
𝑑𝑅s
𝑑𝑡

=
𝛼𝑅s
𝑡

∝ 𝑡𝛼−1

With this form, the momentum equation transforms into (using 𝛾 = 5
3 ):

𝜌0

4
𝑑
𝑑𝑡

(𝑅3
𝑠𝑣𝑠) = 𝑅2

𝑠𝑃in → 𝑃in =
(4𝛼 − 1)

4𝛼 𝜌0𝑣2
𝑠

Here, we utilize the mass expression from a previous equation and the velocity relation
downstream, 𝑣sh = 3

4𝑣𝑠 .

Consequently, the total energy of the system is given by:

𝐸 =
𝜋
8 𝜌0𝐴5𝛼(19𝛼 − 4)𝑡5𝛼−2

Since the Sedov phase is characterized by constant total energy, the value of 𝛼 and 𝐴 are
determined as:

𝛼 =
2
5 and 𝐴 =

(
50
9𝜋

𝐸SN
𝜌0

)1/5
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We conclude that during the Sedov phase, the energy distribution is such that one-third
of the total energy is kinetic (𝐸𝑘/𝐸 = 1/3), while two-thirds is thermal (𝐸th/𝐸 = 2/3).

By substitution we find the evolution equation for radius and velocity

𝑅s ' 5
(

𝐸SN

1051 erg

)1/5 ( 𝑛0

cm−3

)−1/5
(
𝑡

kyr

)2/5
pc

and

𝑣s ' 2 × 103
(

𝐸SN

1051 erg

)1/5 ( 𝑛0

cm−3

)−1/5
(
𝑡

kyr

)−3/5
km s−1

To determine the end of the Sedov phase we need to compute the cooling timescale, 𝜏cool,
and determine at which age the shell become radiative which corresponds to 𝑡age ∼ 𝜏cool

The cooling time is given by the thermal energy divided the cooling rate

𝜏c ' 𝜖th
𝑛𝑖𝑛𝑒Λ

' 3�𝑛𝑘B𝑇

𝑛�2Λ
' 106

( 𝑛0

cm−3

)−1
(

𝑣s

103 km/s

)3
yr

where we assumed full ionized gas 𝑛𝑖 ∼ 𝑛𝑒 and for the cooling function we adopted a
value derived from []

Λ ' 2 × 10−19𝑇−1/2 erg cm3 s−1

Using the cooling time just derived we find that the shell becomes radiative at an age:

𝑡S ' 2 × 104
(

𝐸SN

1051 erg

)3/14 ( 𝑛0

cm−3

)−4/7
yr

𝑅S ' 20
(

𝐸SN

1051 erg

)1/14 ( 𝑛0

cm−3

)1/7
km s−1
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U Motion of a Charged Particle in a Constant Magnetic Field

Let’s start from the Lorentz force

𝑑
𝑑𝑡

(𝑚𝛾v) = 𝑞
v
𝑐
× B −→ 𝑚𝛾

𝑑v
𝑑𝑡

=
𝑞
𝑐

v × B

where I used the fact that in the absence of electric fields, 𝛾 is constant with time

The projection along 𝑧 of v × B is null, therefore

𝑚𝛾
𝑑
𝑑𝑡
𝑣𝑧 =

𝑑
𝑑𝑡
𝑝𝑧 = 0

from this it follows 𝑝𝑧/𝑝 = 𝜇 = const (is the pitch angle) and

𝑝⊥ = (𝑝2 − 𝑝2
𝑧)1/2 = (𝑝2

𝑥 + 𝑝2
𝑦)1/2 = (1 − 𝜇2)1/2 = const

in the orthogonal projection

𝑚𝛾
𝑑
𝑑𝑡
𝑣⊥ =

𝑞
𝑐
𝑣𝐵 sin𝜃 =

𝑞𝑣⊥𝐵
𝑐

−→ 𝑑
𝑑𝑡
𝑣⊥ =

𝑞𝑣⊥𝐵
𝑚𝛾𝑐

=
𝑣2⊥
𝑟L

where I introduced the Larmor radius:

𝑟L = 𝛾𝑟𝑔 =
𝛾𝑚𝑐𝑣⊥
𝑞𝐵

' 𝛾𝑚𝑐2

𝑞𝐵

notice that this is the same as the gyro-radius with the difference of this 𝛾 factor

(reminder: centripetal force is 𝑚𝑣2⊥
𝑟𝑔

)

The corresponding Larmor angular frequency is

ΩL =
𝑣⊥
𝑟L

=
𝑞𝐵
𝛾𝑚𝑐

=
Ω0
𝛾

The equation of motion after integrating becomes

𝑣𝑥 = 𝑣⊥ cos (Ω𝑡) (6.1)

𝑣𝑦 = 𝑣⊥ sin (Ω𝑡) (6.2)
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𝑣𝑧 = 𝑣𝜇 (6.3)

and for the trajectory

𝑥(𝑡) = 𝑥𝑔 + 𝑟𝐿 sin (Ω𝑡) (6.4)

𝑦(𝑡) = 𝑦𝑔 + 𝑟𝐿 cos (Ω𝑡) (6.5)

𝑧(𝑡) = 𝑧𝑔 + 𝑣𝜇𝑡 (6.6)

where (𝑥𝑔 , 𝑦𝑔 , 𝑧𝑔) are the coordinates of the guiding centre.

Recap of quantity defined here:

radius 𝑟𝑔 =
𝑚𝑐𝑣⊥
𝑞𝐵 𝑟𝐿 = 𝛾𝑟𝑔

angular frequency Ω0 = 𝑣⊥
𝑟𝑔

= 𝑞𝐵
𝑚𝑐 Ω𝐿 =

𝑣⊥
𝑟𝐿

= Ω0
𝛾

frequency 𝜈𝑔 =
Ω0
2𝜋 = 𝑞𝐵

2𝜋𝑚𝑐 𝜈𝐿 =
𝜈𝑔
𝛾

U The Radiative Transfer Equation

Radiative transfer involves understanding how radiation propagates and interacts with
matter.

The flux density 𝐹 is defined as the energy flux density, 𝐹 = 𝑑𝐸
𝑑𝐴𝑑𝑡 , where 𝑑𝐴 is the

differential area. The specific energy flux density 𝐹𝜈 is given by 𝐹𝜈 = 𝑑𝐸
𝑑𝐴𝑑𝑡𝑑𝜈 , leading to

𝐹 =
∫
𝑑𝜈𝐹𝜈.

Energy conservation in radiative transfer implies that the energy across different surfaces
of the flux tube remains constant (𝑑𝐸2 = 𝑑𝐸1), where 1(2) denotes a surface at distance
𝑟1(𝑟2) leading to the relation:

4𝜋𝑟2
2𝐹(𝑟2) = 4𝜋𝑟2

1𝐹(𝑟1) → 𝐹(𝑟) = 𝐹(𝑟1)𝑟2
1

𝑟2
2

=
ℒ

4𝜋𝑟2

where ℒ represents the luminosity of the source.

Specific intensity 𝐼𝜈 is the radiation intensity within a frequency band 𝜈 → 𝜈 + 𝑑𝜈:

𝑑𝐸 = 𝐼𝜈𝑑𝐴𝑑𝑡𝑑Ω𝑑𝜈 → 𝐼𝜈 =
𝐹𝜈
𝑑Ω

This quantity depends on location, direction, and frequency, with the total intensity
given by 𝐼 =

∫
𝑑𝜈𝐼𝜈.

Why specific intensity is a convenient quantity?

PLOT

The energy passing trough is 𝑑𝐸1 = 𝐼𝜈1𝑑𝐴1𝑑𝑡𝑑Ω1𝑑𝜈1, and 𝑑𝐸2 = 𝐼𝜈2𝑑𝐴2𝑑𝑡𝑑Ω2𝑑𝜈2
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Assuming 𝑑𝜈1 = 𝑑𝜈2, and 𝑑Ω1 = 𝑑𝐴2
𝑅2 and similarly 𝑑Ω2 = 𝑑𝐴1

𝑅2 , the energy conservation
𝑑𝐸1 = 𝑑𝐸2 gives

𝐼𝜈1𝑑𝐴1𝑑𝑡
𝑑𝐴2

𝑅2 𝑑𝜈 = 𝐼𝜈2𝑑𝐴2𝑑𝑡
𝑑𝐴1

𝑅2 𝑑𝜈 → 𝐼𝜈1 = 𝐼𝜈2

or

𝑑𝐼𝜈
𝑑𝑠

= 0

It implies that all rays passing trough 𝐴1 are also passing trough 𝐴2, in other words,
spectral intensity is the same at the source and at the detector.

The radiative energy density is the energy per unit volume per unit frequency range per
unit solid angle

𝑑𝐸 = 𝑢𝜈(Ω)𝑑𝑉𝑑Ω𝑑𝜈
for light 𝑑𝑉 = (𝑐𝑑𝑡)𝑑𝐴→ 𝑑𝐸 = 𝑐𝑢𝜈𝑑𝑡𝑑𝐴𝑑Ω𝑑𝜈 → 𝑢𝜈 =

𝐼𝜈
𝑐

The specific energy density

𝑢𝜈 =
∫

𝑑Ω𝑢𝜈(Ω) = 1
𝑐

∫
𝑑Ω𝐼𝜈(Ω) = 4𝜋

𝑐
𝐽𝜈

where 𝐽 is the mean intensity

𝐽𝜈 =
1

4𝜋

∫
𝑑Ω𝐼𝜈(Ω)

for an isotropic field is 𝐽𝜈 = 𝐼𝜈.

The total energy density is

𝑢 =
∫

𝑑𝜈𝑢𝜈 =
4𝜋
𝑐

∫
𝑑𝜈𝐽𝜈

TO BE FINISHED...

U Thermodynamics of Adiabatic Processes

An adiabatic process is defined by the absence of heat transfer to or from the system
𝛿𝑄 = 0. According to the first law of thermodynamics:

𝑑U + 𝑃𝑑𝑉 = 0 (6.7)

This equation implies that any work (𝑃𝑑𝑉) performed must be compensated by a change
in the internal energy (U), as no heat is exchanged with the surroundings.

For an ideal gas, obeying the equation of state 𝑃𝑉 = 𝑛𝑅𝑇 (where 𝑅 is the universal gas
constant), the internal energy is given by:

U = 𝛼𝑛𝑅𝑇 = 𝛼𝑃𝑉 (6.8)

102



HE-AP Th Thermodynamics of Adiabatic Processes

Here, 𝑛 represents the number of moles, and 𝛼 is the number of degrees of freedom
divided by 2.

Differentiating Equation 6.8 results in:

𝑑U = 𝛼𝑛𝑅𝑑𝑇 = 𝛼(𝑃𝑑𝑉 +𝑉𝑑𝑃) (6.9)

Substituting this into Equation 6.7 yields:

− 𝑃𝑑𝑉 = 𝛼𝑃𝑑𝑉 + 𝛼𝑉𝑑𝑃 → −(𝛼 + 1)𝑑𝑉
𝑉

= 𝛼
𝑑𝑃
𝑃

(6.10)

Integrating both sides of this equation, we get:

ln
(
𝑃
𝑃0

)
= −𝛼 + 1

𝛼
ln

(
𝑉
𝑉0

)
= −𝛾𝑔 ln

(
𝑉
𝑉0

)
(6.11)

where 𝛾𝑔 is the heat capacity ratio, 𝑐𝑉 = 𝛼𝑅, and we have used Mayer’s relation
𝑐𝑃 − 𝑐𝑉 = 𝑅.

Thus, a reversible adiabatic process (one with no entropy generation) can be character-
ized by the polytropic process equation:

𝑃𝑉𝛾 = constant (6.12)

Notice that for an ideal gas the internal energy is solely a function of temperature. Indeed,
from Eq. 6.8, we obtain

U = 𝑛𝑐𝑉𝑇 =
𝑃𝑉

𝛾𝑔 − 1 (6.13)

Thus, expressing internal energy per unit volume as 𝑢, we get:

𝑢 =
U
𝑉

=
𝑃

𝛾𝑔 − 1 (6.14)

On the other hand, enthalpy ℋ is defined as:

ℋ = U + 𝑃𝑉 → ℋ
𝑉

= 𝑢 + 𝑃

Employing the relation 𝑢 = 𝜌𝜖 (where 𝜌 is the density and 𝜖 is the specific internal energy,
i.e., energy per unit mass), we derive the specific enthalpy:

ℎ =
1
𝜌
ℋ
𝑉

= 𝜖 + 𝑃
𝜌

(6.15)
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U Solving the Rankine-Hugoniot relations

We are tasked with solving the following system of equations to understand shock wave
dynamics:

𝜌1𝑢1 = 𝜌2𝑢2 (6.16)

𝜌1𝑢2
1 + 𝑃1 = 𝜌2𝑢2

2 + 𝑃2 (6.17)
1
2𝑢

2
1 + 𝛾

𝛾 − 1
𝑃1
𝜌1

=
1
2𝑢

2
2 + 𝛾

𝛾 − 1
𝑃2
𝜌2

(6.18)

First, we normalize the third equation by dividing it by the term 1
2𝑢

2
1 :

1 + 𝛾

𝛾 − 1
2𝑃1

𝑢2
1𝜌1

=
𝑢2

2

𝑢2
1
+ 𝛾

𝛾 − 1
2𝑃2

𝑢2
1𝜌2

. (6.19)

Utilizing the first equation, we can express 𝑃2 as:

𝑃2 = 𝑃1 + 𝜌1𝑢2
1 − 𝜌2𝑢2

2 . (6.20)

By incorporating the relationship 𝛾𝑃𝑖
𝜌𝑖

= 𝑐2
s,𝑖 , we derive:

1 + 2
𝛾 − 1

1
ℳ2

1
=
𝑢2

2

𝑢2
1

(
1 − 2𝛾

𝛾 − 1

)
+

(
2

𝛾 − 1
1

ℳ2
1
+ 2𝛾

𝛾 − 1

)
𝜌1

𝜌2
. (6.21)

After algebraic manipulation and introducing 𝑥 = 𝑢2
𝑢1

, we obtain:

𝑥2ℳ2
1(𝛾 + 1) − 2𝑥(𝛾ℳ2

1 + 1) + 2 + (𝛾 − 1)ℳ2
1 = 0.

This equation yields two solutions: the trivial 𝑢2
𝑢1

= 1 and the non-trivial:

𝑢2
𝑢1

=
(𝛾 − 1)ℳ2

1 + 2
(𝛾 + 1)ℳ2

1
.

Returning to the third equation and dividing by the second term, we arrive at:

𝜌1𝑢2
1(𝛾 − 1)
2𝛾𝑃1

+ 1 =
𝜌1𝑢2

2(𝛾 − 1)
2𝛾𝑃1

+ 𝑢2
𝑢1

𝑃2
𝑃1
.

Consequently:
𝑃2
𝑃1

=

[
1 + ℳ2

1(𝛾 − 1)
2

]
𝑢1
𝑢2

− ℳ2
1(𝛾 − 1)

2
𝑢2
𝑢1
.

Substituting the ratio 𝑢2
𝑢1

obtained earlier:

𝑃2
𝑃1

=
2𝛾ℳ2

1
𝛾 + 1 − 𝛾 − 1

𝛾 + 1 .
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Using the ideal gas law, we can relate pressure and temperature:

𝑃 = 𝑛𝑘𝐵𝑇
𝑚𝑝

𝑚𝑝
→ 𝑃

𝑇𝜌
= constant.

Thus:
𝑇2
𝑇1

=
𝑃2
𝑃1

𝜌1

𝜌2
=
𝑃2
𝑃1

𝑢2
𝑢1
.

Finally, substituting the previously derived relations, we find:

𝑇2
𝑇1

=

[
2𝛾ℳ2

1 − (𝛾 − 1)] [(𝛾 − 1)ℳ2
1 + 2

]
(𝛾 + 1)2ℳ2

1
.
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