Low-energy parameterizations of X_{max} statistics

Carmelo Evoli, on behalf of the Auger-L'Aquila group

Gran Sasso Science Institute, L'Aquila (Italy) INFN/Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy)

April 14, 2024

Based on GAP-2020-058

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト ● ● ● ● ●

Motivations

- $\triangleright~$ Our goal is to broaden the scope of the combined fit in order to cover lower energies down to E $\gtrsim 10^{15}~{\rm eV} \rightarrow {\rm Galactic-ExtraGalactic transition}$
- $\triangleright~$ Existing parametrizations for calculating cosmic ray composition using X_{max} statistics are constrained to energies above E $\gtrsim 10^{17}$ eV (see GAP2020_058)
- It's crucial to assess whether these current models remain accurate for energies down to 10¹⁵ eV. Should discrepancies arise, we must consider refining our parametrization models to ensure reliable composition in the knee energy spectrum.

Conex simulations

From GAP2020_058:

- Conex version: version 4.37 for EPOS-LHC and QGSJet II-04, version 7.30 for Sibyll 2.3d
- Hadronic models used Sibyll 2.3d, EPOS-LHC and QGSJet II-04
- $\triangleright~$ The log energy range 17 ightarrow 20 in 13 fixed Ig E bins with Δ log E =0.25
- Number of showers 5.4k 7.7k / bin
- The Xmax used to build the distributions is taken from the XmxdEdX branch of the CONEX file
- Primary nuclei: H, He, N, Si, Ca and Fe

New simulations at CNAF:

- Conex version: version 7.60
- Hadronic models used Sibyll 2.3d, EPOS-LHC, QGSJet II-04, and DPM-JET III
- \triangleright The log energy range 15 \rightarrow 20.5 in 23 fixed Ig E bins with Δ log E = 0.25
- ▷ Number of showers $10k / bin \xrightarrow{\text{goal}} 100k / bin$
- The Xmax used to build the distributions is taken from the XmxdEdX branch of the CONEX file
- Primary nuclei: H, He, N, Si, and Fe

Definitions

Mean:

$$\langle X \rangle = \frac{1}{N} \sum_{i=0}^{N} X_i \tag{1}$$

Variance:

$$\sigma_{X}^{2} = \frac{1}{N} \sum_{i=0}^{N} |X_{i} - \langle X \rangle|^{2}$$
⁽²⁾

$$\sigma_{\rm X} = \sqrt{\sigma_{\rm X}^2} \tag{3}$$

Error of the Mean:

$$\epsilon = \frac{\sigma_{\rm X}}{\sqrt{\rm N}} \tag{4}$$

Error of the Standard Deviation:

$$\rho = \frac{\sigma_{\chi}}{\sqrt{2N}} \tag{5}$$

X_{max} parametrizations

▷ We model X_{max} as a function of $x \equiv \log(E/E_0)$ and $y \equiv \ln A$

▷ GAP parametrization (4 free parameters):

which can be re-written as

$$f(x,y) = (p_0 + p_1 x) + (\alpha + \beta x)y \equiv f_p(x) + f_E(x)y$$

▶ EXT parametrization (6 free parameters):

which can be re-written as

$$f(x,y) = (p_0 + p_1 x + p_2 x^2) + (\alpha + \beta x + \gamma x^2)y \equiv f_p(x) + f_E(x)y$$

X_{max} parametrizations

- Dots: CONEX simulations using Sibyll-23d. Error bars show the std error of the mean over N simulations
- \triangleright Dotted lines: best fit of GAP (linear in y) parametrization assuming E_{min} = 10^{17} eV
- $\triangleright~$ Dashed lines: best fit of EXT (2nd order in y) parametrization assuming E $_{
 m min}=10^{15}~{
 m eV}$

< □ > < 🗇 > < 🖻

X_{max} parametrizations

Fit parameters based on Sibyll-2.3D.

	Do	D1	D_2	α	β	γ
GAP	815.83 ± 0.11	58.09 ± 0.11	-	-26.19 ± 0.03	0.67 ± 0.03	-
EXT	816.21 ± 0.12	58.01 ± 0.11	-0.37 ± 0.04	-25.67 ± 0.04	0.56 ± 0.03	-0.46 ± 0.01

990

ヘロト 人間 トイヨト イヨト

$X_{\mbox{max}}$ residuals

- $\triangleright~$ Positive plane: residuals of the EXT parametrization assuming E $_{
 m min}=10^{15}~{
 m eV}$
- \triangleright Negative plane: residuals of the GAP parametrization assuming E_{min} $= 10^{17}$ eV
- Mean residuals in g/cm². Si was not included in the fit:

	Н	He	N	Si	Fe
GAP	3.07	2.95	4.56	5.71	7.11
EXT	1.96	0.98	1.21	1.35	1.37

< 🗗 🕨 🔸

$\sigma({\rm X}_{\rm max})$ parametrizations

- ▷ We model $\sigma(X_{max})$ as a function of $x \equiv \log(E/E_0)$ and $y \equiv \ln A$
- ▷ GAP parametrization (6 free parameters):

900

$\sigma({\rm X}_{\rm max})$ parametrizations

- > Dots: CONEX simulations using Sibyll-23d. Error bars show the error of the std deviation over N simulations
- \triangleright Dotted lines: best fit of GAP parametrization assuming E_{min} = 10^{17} eV
- $\triangleright~$ Dashed lines: best fit of GAP parametrization extended to E $_{
 m min}=10^{15}~{
 m eV}$

$\sigma(X_{max})$ parametrizations

	Po	P1	p2	a ₀	a1	b
GAP	61.3 ± 0.1	-4.3 ± 0.1	0.53 ± 0.07	-0.228 ± 0.001	-0.0002 ± 0.0002	0.0173 ± 0.0003
GAP-ext	61.0 ± 0.1	-4.5 ± 0.1	0.67 ± 0.02	-0.223 ± 0.001	0.0008 ± 0.0001	0.0161 ± 0.0002

Fit parameters based on Sibyll-2.3D.

DQC

$\sigma({\rm X}_{\rm max})$ residuals

- $\triangleright~$ Positive plane: residuals of the GAP parametrization assuming E $_{
 m min}=10^{15}~{
 m eV}$
- \triangleright Negative plane: residuals of the GAP parametrization assuming E_{min} = 10^{17} eV
- Mean residuals in g/cm². Si was not included in the fit:

	Н	He	N	Si	Fe]
GAP	1.34	0.93	0.92	0.25	0.45	
GAP-ext	0.97	1.08	0.68	0.29	0.26	
	•				Image: 1 to 1 t	° ∢ r≜

Understanding Anomalous Shower Profiles

- Most air showers caused by high-energy cosmic rays follow a predictable pattern, showing a single, clearly defined maximum in their longitudinal development.
- A small subset exhibits deviations from this norm, with some showing significantly different profiles, including cases with two distinct maxima.
- We use simulations to analyze the frequency of these anomalous profiles as a function of the primary energy.
- We limit our investigation to primary protons (where anomalies are most pronounced) and apply a single interaction model for the moment.

Modeling the Longitudinal Shower Profile

Gaisser-Hillas is a 3-parameter model to describe the normalized (N_{max} = 1) longitudinal profile of a shower. The function is given by:

$$y(X) = \left(1 + R\frac{X'}{L}\right)^{R^{-2}} \exp\left(-\frac{X'}{RL}\right)$$
(6)

where

$$X' = X - X_{max}$$
(7)

 \triangleright We evaluate the accuracy of our model using the χ^2 :

$$\chi^{2} = \sum_{Y_{i} > Y_{min}} \frac{[Y(X_{i}) - Y_{i}]^{2}}{V_{i}}$$
(8)

where Y_i represents the normalized profile simulated by CONEX.

 \triangleright We assume V_i = (k/E)Y_i where k is a constant chosen for each shower such that $\sqrt{\sum V_i} / \sum Y_i = 0.01$ following

$$\frac{k}{E} = (0.01)^2 \frac{\left(\sum Y_i\right)^2}{\sum Y_i} = (0.01)^2 \sum Y_i$$
(9)

 \triangleright Furthermore profile points where $\sqrt{V_i}/Y_i > 0.3$ are excluded from the fit which leads to a minimum value:

$$Y_{min} = \frac{(k/E)}{(0.3)^2}$$
(10)

・ロト ・ 四ト ・ ヨト ・ ヨト

To find the best fit parameters, (X_{max}, R, L), we perform a minimization of \chi² starting from approximately 100 randomly selected initial points in the parameter space.

Shower examples

 \triangleright We present four shower profiles with different best-fit values of $\chi^2 = 10^{-2}, 0.1, 1, 10$

イロト イロト イモト イモト

Exploring the Parameter Space of Shower Profiles

The Fraction of Anomalous Profiles

 \triangleright For proton showers at 10^{15} eV the fraction of profiles with p-value < 0.05 is $\lesssim 2\%$

The impact on X_{max} statistics

- \triangleright Upper plot: the mean X_{max} as a function of the maximum χ^2 /dof allowed
- \triangleright Lower plot: the X_{max} variance as a function of the maximum χ^2 /dof allowed
- $\triangleright~$ We conclude that the maximum impact of profiles with p-value < 0.05 for proton showers at E $= 10^{15}$ is $\lesssim 2$ gr/cm 2

ヘロト ヘロト ヘヨト ヘ

Anomalous Profiles identification

Following Baus+, 2011

Anomalous Profiles (APs) are identified when the following three conditions are satisfited:

- $\triangleright~$ Two G-H functions significantly improve the goodness of the fit ($\Delta\chi^2>25)$
- ▷ The shower maxima are clearly separated (|X_{max,2} X_{max,1}| > 300 g/cm²)
- ▷ Both fitted sub-showers have more than 20% of the primary energy

• • • • • • • • • • • • •

Anomalous Profiles identification

- \triangleright ΔX_{max} is the difference of the best-fit X_{max} using the G-H fit and the X_{max} identified as the maximum of the shower
- $\triangleright \Delta X_{
 m max}$ increases on average for larger χ^2 's
- Identified APs are about 3% for showers started by protons of 10¹⁵ eV, their impact is reported in the following table:

Energy	fraction of AP's	X _{max}	X _{max} without AP's	$\sigma(X_{max})$	$\sigma({ m X}_{ m max})$ without AP's
15	3.25%	572.2	570.8	88.5	86.8
16	1.34%	635.8	634.8	79.1	78.0
17	0.26%	695.2	694.9	72.5	72.3

< □ > < 🗇 > < 🖻

Based on Sibyll-2.3D. P.Auger Coll., ICRC 2019, internal use only

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Based on Sibyll-2.3D. P.Auger Coll., ICRC 2019, internal use only

・ロト ・ 日 ト ・ ヨト

Based on Sibyll-2.3D. P.Auger Coll., ICRC 2019, internal use only

P.Auger Coll., ICRC 2019, internal use only

ヘロト ヘロト ヘビト ヘ

P.Auger Coll., ICRC 2019, internal use only

ヘロト ヘロト ヘビト ヘ

P.Auger Coll., ICRC 2019, internal use only

In A moments in Auger data

P.Auger Coll., ICRC 2019, internal use only

Variance of InA in Auger data

There are two independent sources of fluctuations: the intrinsic shower-to-shower fluctuations and the InA dispersion arising from the mass distribution:

$$\sigma^{2}(X_{\text{max}}) = \langle \sigma_{\text{sh}}^{2} \rangle + \left(\frac{d\langle X_{\text{max}} \rangle}{d \ln A}\right)^{2} \sigma_{\ln A}^{2} = \langle \sigma_{\text{sh}}^{2} \rangle + f_{\text{E}}^{2} \sigma_{\ln A}^{2}$$
(11)

 $\triangleright~$ We assume a parameterization for $\sigma^2_{\rm sh}$ as follows

$$\sigma_{\rm sh}^2(\ln A) = \sigma_{\rm p}^2 \left[1 + a \ln A + b (\ln A)^2 \right] \tag{12}$$

therefore

$$\langle \sigma_{\rm sh}^2 \rangle = \sigma_{\rm p}^2 \left[1 + {\rm a} \langle \ln {\rm A} \rangle + {\rm b} \langle (\ln {\rm A})^2 \rangle \right] \tag{13}$$

After substitution

$$\sigma^{2}(X_{\max}) = \sigma_{p}^{2} \left[1 + a\langle \ln A \rangle + b\langle (\ln A)^{2} \rangle \right] + f_{E}^{2} \sigma_{\ln A}^{2}$$
(14)

▷ We apply the definition

$$\langle (\ln A)^2 \rangle = \sigma_{\ln A}^2 + \langle \ln A \rangle^2 \tag{15}$$

As a result we arrive at

$$\sigma_{\ln A}^{2} = \frac{\sigma^{2}(X_{\max}) - \sigma_{sh}^{2}(\langle \ln A \rangle)}{b\sigma_{p}^{2} + f_{E}^{2}}$$
(16)

Measurements of the mean of the Xmax distribution

id	Experiment	Mode	Ref.	Table	comment
54	PAO	FD	ICRC 2019	8	PAO public data
180	PAO	RD	UHECR 2023	×	
193	PAO	SD	ICRC 2019	8	PAO internal data(?)
75	TA	FD	ApJ 2018	8	Tab. 4 but data corrected as done in Ref. 2(?)
143	TALE	Č	ApJ 2021	8	Tab. 5 is bias-corrected(?)
178	Tunka	Č	ICRC 2021	×	
182	Tunka	RD	PRD 2018	8	Tab. 3
179	Yakutsk	Č	ASR 2019	8	Tab. 2+3
183	Yakutsk	RD	ICRC 2019	×	
181	LOFAR	radio	PRD 2021	×	
832	Hi-Res/Mia		ApJ 2001	×	

Datasets cited in the Snowmass paper.

DQC

Mean InA in other datasets

Work in progress...

Based on Sibyll-2.3D.

э

ヘロト ヘロト ヘヨト

$$z = \frac{x - \mu}{\beta}$$
, $G(z) = \frac{1}{\beta} \frac{\lambda^{\lambda}}{\Gamma(\lambda)} e^{-\lambda(z + e^{-z})}$

Goal: parametrize $\mu = \mu(\mathbf{x}, \mathbf{y})$, $\beta = \beta(\mathbf{x}, \mathbf{y})$, $\lambda = \lambda(\mathbf{x}, \mathbf{y})$

Mass: H, Energy: $10^{16} \, \mathrm{eV}$

Mass: H, Energy: $10^{20} \, \mathrm{eV}$

Parametrizations

▷ μ as a function of x \equiv log(E/E₀) and y \equiv ln A

$$\begin{array}{rcl} p^{\mu}_{0}(y) &=& a^{\mu}_{0} + a^{\mu}_{1}y + a^{\mu}_{2}y^{2} \\ p^{\mu}_{1}(y) &=& b^{\mu}_{0} + b^{\mu}_{1}y + b^{\mu}_{2}y^{2} \\ p^{\mu}_{2}(y) &=& c^{\mu}_{0} + c^{\mu}_{1}y + c^{\mu}_{2}y^{2} \\ \mu(x,y) &=& p^{\mu}_{0}(y) + p^{\mu}_{1}(y)x + p^{\mu}_{2}(y)x^{2} \end{array}$$

▷ β as a function of x $\equiv \log(E/E_0)$ and y $\equiv \ln A$

$$\begin{array}{rcl} p^{\beta}_{0}(y) & = & a^{\beta}_{0} + a^{\beta}_{1}y + a^{2}_{2}y^{2} \\ p^{\beta}_{1}(y) & = & b^{\beta}_{0} + b^{\beta}_{1}y + b^{\beta}_{2}y^{2} \\ \beta(x,y) & = & p^{\beta}_{0}(y) + p^{\beta}_{1}(y)x + p^{\beta}_{2}(y)x^{2} \end{array}$$

 $\triangleright \ \lambda$ as a function of x $\equiv \log(E/E_0)$ and y $\equiv \ln A$

$$\begin{array}{rcl} p_0^{\lambda}(y) &=& a_0^{\lambda} + a_1^{\lambda}y + a_2^{\lambda}y^2 \\ p_1^{\lambda}(y) &=& b_0^{\lambda} + b_1^{\lambda}y + b_2^{\lambda}y^2 \\ \lambda(x,y) &=& p_0^{\lambda}(y) + p_1^{\lambda}(y)x + p_2^{\lambda}(y)x^2 \end{array}$$

▷ 21 free parameters. Cross fingers...

э

590

・ロト ・ 日 ト ・ ヨ ト ・

590

・ロト ・ 日 ト ・ ヨト

Next Steps

- Calculating the parametrization parameters for 4 distinct HIMs → assessing the variations among these models.
- We plan to augment our dataset of CONEX simulations by 10x. This increase in data volume aims to minimize the scatter in Gumbel parametrizations.
- We are actively testing additional parametrization methods rather than Gumbel functions (see, e.g., Luan B. Arbeletche, Vitor de Souza, Astroparticle Physics 116, 2020, 102389)
- We aim at providing parametrizations and simulated X_{max} templates public online on ZENODO